1
|
Qi T, Wang X, Huang Y, Song Y, Ma L, Ying Q, Chatooah ND, Lan Y, Chen P, Xu W, Chu K, Ruan F, Zhou J. Change in metabolic parameters and reproductive hormones from baseline to 6-month hormone therapy. Medicine (Baltimore) 2022; 101:e28361. [PMID: 35029882 PMCID: PMC8735779 DOI: 10.1097/md.0000000000028361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/01/2021] [Indexed: 11/26/2022] Open
Abstract
Adequate evidence showed hormone therapy (HT) reduces the risk of new-onset diabetes in midlife women by decreasing fasting glucose and insulin. However, the improvement of these diabetic biomarkers varied with each individual in clinical observations. The objective of our study was to investigate potential baseline factors associated with the change of fasting glucose and insulin during HT.A retrospective cohort study was performed among 263 midlife participants aged 40 to 60 years with menopausal symptoms who have received 6-month individualized HT. Demographic information and laboratory indicators including reproductive hormone, lipid profiles, diabetic indicators were collected and measured at baseline and were followed-up. A series of statistical analyses were performed to confirm the effectiveness of HT and compare the baseline factors between participants with different glycemic or insulinemic response. Multivariable linear regression model with stepwise variable selection was further used to identify the associated factor with the change of fasting glucose and insulin.Of all participants, fasting glucose (P = .001) and fasting insulin (P < .001) were significantly decreased after individualized HT. Significant differences in baseline reproductive hormones were observed in participants with different glycemic response to HT (P < .001 for both follicle stimulating hormone [FSH] and estradiol). Stepwise linear regression model showed that in addition to baseline fasting glucose levels, baseline FSH was also independently associated with the change of fasting glucose (β = -0.145, P = .019 for baseline FSH) but not fasting insulin. Greater reduction in fasting glucose in women with higher FSH levels was observed even though they have already been in better metabolic conditions (P = .037).Midlife women with higher baseline FSH levels have greater reduction in fasting glucose but not fasting insulin. FSH could be an independent predictor of glycemic response to HT in peri- and postmenopausal women.
Collapse
Affiliation(s)
- Tongyun Qi
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xueqing Wang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Ningbo No.6 Hospital, Ningbo, People's Republic of China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yang Song
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Linjuan Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qian Ying
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Namratta Devi Chatooah
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yibin Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Peiqiong Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenxian Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ketan Chu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fei Ruan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Willmes DM, Daniels M, Kurzbach A, Lieske S, Bechmann N, Schumann T, Henke C, El-Agroudy NN, Da Costa Goncalves AC, Peitzsch M, Hofmann A, Kanczkowski W, Kräker K, Müller DN, Morawietz H, Deussen A, Wagner M, El-Armouche A, Helfand SL, Bornstein SR, de Cabo R, Bernier M, Eisenhofer G, Tank J, Jordan J, Birkenfeld AL. The longevity gene mIndy (I'm Not Dead, Yet) affects blood pressure through sympathoadrenal mechanisms. JCI Insight 2021; 6:136083. [PMID: 33491666 PMCID: PMC7934862 DOI: 10.1172/jci.insight.136083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Reduced expression of the plasma membrane citrate transporter INDY (acronym I’m Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target. Deletion of mIndy reduces blood pressure and heart rate by attenuating catecholamine biosynthesis and recapitulates beneficial cardiovascular and metabolic responses to caloric restriction.
Collapse
Affiliation(s)
- Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Daniels
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stefanie Lieske
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | | | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Kristin Kräker
- Experimental and Clinical Research Center, Max Delbruck Center for Molecular Medicine and Charité - University Hospital Berlin, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbruck Center for Molecular Medicine and Charité - University Hospital Berlin, Berlin, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Medical Faculty Carl Gustav Carus, and
| | - Michael Wagner
- Department of Pharmacology and Toxicology, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Stephan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Graeme Eisenhofer
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Jens Tank
- Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Jens Jordan
- Aerospace Medicine, University of Cologne, Cologne, Germany.,Institute for Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Depypere H, Dierickx A, Vandevelde F, Stanczyk F, Ottoy L, Delanghe J, Lapauw B. A randomized trial on the effect of oral combined estradiol and drospirenone on glucose and insulin metabolism in healthy menopausal women with a normal oral glucose tolerance test. Maturitas 2020; 138:36-41. [PMID: 32631586 DOI: 10.1016/j.maturitas.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Menopause is often associated with a central accumulation of body fat. This provokes insulin resistance. The resulting hyperinsulinemia may increase the risk of diabetes, cardiovascular disease and breast cancer. Long-term studies indicate that menopausal hormone therapy (MHT) reduces insulin resistance. To broaden knowledge of the mechanisms behind the influence of MHT on glucose homeostasis we focused on the direct short-term effects of MHT with oral combined estradiol and drospirenone on glucose and insulin metabolism in healthy postmenopausal women. METHODS This randomized, placebo-controlled study recruited 80 healthy postmenopausal women. Women were randomized to treatment with estradiol 1 mg continuously combined with drospirenone 2 mg or placebo for 6-8 weeks. All participants underwent an oral glucose tolerance test (OGTT) before and after the treatment period. Glucose, insulin, fructosamine and C-peptide levels were measured in serum before and 30, 60, 90, 120 and 150 min after a 75-gram oral glucose challenge. RESULTS After intervention, significantly higher glucose levels at 120 min (p < 0.024) and 150 min (p < 0.030) were observed in the MHT group compared with the placebo group. These glucose levels remained within the normal range. A significantly lower insulin peak serum level (p < 0.040) and a non-significantly smaller area under the curve (AUC) for insulin levels (p = 0.192) was observed in the MHT group at the end of the study period relative to baseline. No significant change in the insulin AUC in the placebo group was observed. There were no significant differences in fructosamine, HOMA-IR and C-peptide levels between the MHT group and the placebo group. CONCLUSION This double-blind randomized study (EC/2008/694) indicates that treating healthy, postmenopausal women with 1 mg estradiol continuously combined with 2 mg drospirenone significantly decreases peak insulin levels and increases peak glucose levels during an OGTT compared to placebo. These glucose levels remained within the normal range.
Collapse
Affiliation(s)
- H Depypere
- Breast and Menopause Clinic, Ghent University Hospital, Ghent, Belgium.
| | - A Dierickx
- Breast and Menopause Clinic, Ghent University Hospital, Ghent, Belgium
| | - F Vandevelde
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - F Stanczyk
- Departments of Obstetrics and Gynecology, and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - L Ottoy
- Breast and Menopause Clinic, Ghent University Hospital, Ghent, Belgium
| | - J Delanghe
- Department Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | - B Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Mauvais-Jarvis F, Manson JE, Stevenson JC, Fonseca VA. Menopausal Hormone Therapy and Type 2 Diabetes Prevention: Evidence, Mechanisms, and Clinical Implications. Endocr Rev 2017; 38:173-188. [PMID: 28323934 PMCID: PMC5460681 DOI: 10.1210/er.2016-1146] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes has reached epidemic proportions in the United States. Large, randomized controlled trials suggest that menopausal hormone therapy (MHT) delays the onset of type 2 diabetes in women. However, the mechanisms and clinical implications of this association are still a matter of controversy. This review provides an up-to-date analysis and integration of epidemiological, clinical, and basic studies, and proposes a mechanistic explanation for the effect of menopause and MHT on type 2 diabetes development and prevention. We discuss the beneficial effects of endogenous estradiol with respect to insulin secretion, insulin sensitivity, and glucose effectiveness; we also discuss energy expenditure and adipose distribution, both of which are affected by menopause and improved by MHT, which thereby decreases the incidence of type 2 diabetes. We reconcile differences among studies that investigated the effect of menopause and MHT formulations on type 2 diabetes. We argue that discrepancies arise from physiological differences in methods used to assess glucose homeostasis, ranging from clinical indices of insulin sensitivity to steady-state methods to assess insulin action. We also discuss the influence of the route of estrogen administration and the addition of progestogens. We conclude that, although MHT is neither approved nor appropriate for the prevention of type 2 diabetes due to its complex balance of risks and benefits, it should not be withheld from women with increased risk of type 2 diabetes who seek treatment for menopausal symptoms.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - John C Stevenson
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | - Vivian A Fonseca
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|