1
|
Lu J, Xiong C, Wei J, Xiong C, Long R, Yu Y, Ye H, Ozdemir E, Li Y, Wu R. The role and molecular mechanism of flgK gene in biological properties, pathogenicity and virulence genes expression of Aeromonas hydrophila. Int J Biol Macromol 2024; 258:129082. [PMID: 38161026 DOI: 10.1016/j.ijbiomac.2023.129082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.
Collapse
Affiliation(s)
- Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jinming Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongxiang Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Eda Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Qu D, Qiao DF, Klintschar M, Qu Z, Yue X. High-throughput 16S rDNA sequencing assisting in the detection of bacterial pathogen candidates: a fatal case of necrotizing fasciitis in a child. Int J Legal Med 2020; 135:399-407. [PMID: 32895762 DOI: 10.1007/s00414-020-02421-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
Postmortem detection of pathogens in infectious deaths is quite important for diagnosing the cause of death and public health. However, it is difficult to detect possible bacterial pathogens in forensic practice using conventional methods like bacterial culture, especially in cases with putrefaction and antibiotic treatment. We report a fatal case caused by necrotizing fasciitis due to bacterial infection. An 8-year-old girl was found dead during sleep 4 days after a minor trauma to her left knee. The gross autopsy suggested that bacterial soft tissue infection might be the cause of death, and the microscopic examination confirmed the diagnosis. The slight putrefaction found at gross autopsy might interfere through postmortem bacterial translocation and reproduction with bacterial culture. High-throughput 16S rDNA sequencing was employed to identify possible pathogens. Bacterial DNA sequencing results suggested Streptococcus pyogenes and Staphylococcus, typical pathogens of necrotizing fasciitis in the tissue. 16S rDNA sequencing might thus be a useful tool for accurate detection of pathogens in forensic practice.
Collapse
Affiliation(s)
- Dong Qu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.,Institute of Legal Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Dong-Fang Qiao
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Zhi Qu
- Institute for Epidemiology, Social Medicine and Health Systems Research, Hannover Medical School, 30625, Hannover, Germany
| | - Xia Yue
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Perinatal Mortality Associated with Positive Postmortem Cultures for Common Oral Flora. Infect Dis Obstet Gynecol 2017; 2017:9027918. [PMID: 28325959 PMCID: PMC5343271 DOI: 10.1155/2017/9027918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction. To investigate whether maternal oral flora might be involved in intrauterine infection and subsequent stillbirth or neonatal death and could therefore be detected in fetal and neonatal postmortem bacterial cultures. Methods. This retrospective study of postmortem examinations from 1/1/2000 to 12/31/2010 was searched for bacterial cultures positive for common oral flora from heart blood or lung tissue. Maternal age, gestational age, age at neonatal death, and placental and fetal/neonatal histopathological findings were collected. Results. During the study period 1197 postmortem examinations (861 stillbirths and 336 neonatal deaths) were performed in our hospital with gestational ages ranging from 13 to 40+ weeks. Cultures positive for oral flora were identified in 24 autopsies including 20 pure and 8 mixed growths (26/227, 11.5%), found in 16 stillbirths and 8 neonates. Microscopic examinations of these 16 stillbirths revealed 8 with features of infection and inflammation in fetus and placenta. The 7 neonatal deaths within 72 hours after birth grew 6 pure isolates and 1 mixed, and 6 correlated with fetal and placental inflammation. Conclusions. Pure isolates of oral flora with histological evidence of inflammation/infection in the placenta and fetus or infant suggest a strong association between maternal periodontal conditions and perinatal death.
Collapse
|