1
|
Birkhead M, Otido S, Mabaso T, Mopeli K, Tlhapi D, Verwey C, Dangor Z. Ultrastructure for the diagnosis of primary ciliary dyskinesia in South Africa, a resource-limited setting. Front Pediatr 2023; 11:1247638. [PMID: 37645034 PMCID: PMC10461090 DOI: 10.3389/fped.2023.1247638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction International guidelines recommend a multi-faceted approach for successful diagnoses of primary ciliary dyskinesia (PCD). In the absence of a gold standard test, a combination of genetic testing/microscopic analysis of structure and function/nasal nitric oxide measurement is used. In resource-limited settings, often none of the above tests are available, and in South Africa, only transmission electron microscopy (TEM) is available in central anatomical pathology departments. The aim of this study was to describe the clinical and ultrastructural findings of suspected PCD cases managed by pediatric pulmonologists at a tertiary-level state funded hospital in Johannesburg. Methods Nasal brushings were taken from 14 children with chronic respiratory symptoms in keeping with a PCD phenotype. Ultrastructural analysis in accordance with the international consensus guidelines for TEM-PCD diagnostic reporting was undertaken. Results TEM observations confirmed 43% (6) of the clinically-suspected cases (hallmark ultrastructural defects in the dynein arms of the outer doublets), whilst 57% (8) required another PCD testing modality to support ultrastructural observations. Of these, 25% (2) had neither ultrastructural defects nor did they present with bronchiectasis. Of the remaining cases, 83% (5) had very few ciliated cells (all of which were sparsely ciliated), together with goblet cell hyperplasia. There was the apparent absence of ciliary rootlets in 17% (1) case. Discussion In resource-limited settings in which TEM is the only available testing modality, confirmatory and probable diagnoses of PCD can be made to facilitate early initiation of treatment of children with chronic respiratory symptoms.
Collapse
Affiliation(s)
- Monica Birkhead
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases – a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Samuel Otido
- Department of Paediatrics and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Theodore Mabaso
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Keketso Mopeli
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Dorcas Tlhapi
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Charl Verwey
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Vece TJ, Popler J, Gower WA. Pediatric pulmonology 2020 year in review: Rare and diffuse lung disease. Pediatr Pulmonol 2022; 57:807-813. [PMID: 34964566 DOI: 10.1002/ppul.25807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/08/2022]
Abstract
Pediatric Pulmonology publishes original research, review articles, and case reports on topics related to a wide range of children's respiratory disorders. Here we review some of the most notable manuscripts published in 2020 in this journal on (1) children's interstitial lung disease (chILD), (2) congenital airway and lung anomalies, and (3) primary ciliary dyskinesia and other non-cystic fibrosis bronchiectasis. The articles reviewed are discussed in context with published works from other journals.
Collapse
Affiliation(s)
- Timothy J Vece
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan Popler
- Children's Physician Group - Pulmonology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William A Gower
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Cangiotti AM, Pifferi M, Fonnesu R, Gracci S, Cinti S. Cytoplasmic ciliary inclusions can reflect an abnormal ciliogenesis in respiratory epithelium. Pediatr Pulmonol 2020; 55:1874-1875. [PMID: 32453895 DOI: 10.1002/ppul.24859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Angela M Cangiotti
- Department of Experimental and Clinical Medicine, Biology of Obesity-Electron Microscopy Unit, Center of Obesity, United Hospitals-Marche Polytechnic University, Ancona, Italy
| | - Massimo Pifferi
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Rossella Fonnesu
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Serena Gracci
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Biology of Obesity-Electron Microscopy Unit, Center of Obesity, United Hospitals-Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
4
|
Vece TJ, Sagel SD, Zariwala MA, Sullivan KM, Burns KA, Dutcher SK, Yusupov R, Leigh MW, Knowles MR. Cytoplasmic "ciliary inclusions" in isolation are not sufficient for the diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol 2020; 55:130-135. [PMID: 31549486 PMCID: PMC7068840 DOI: 10.1002/ppul.24528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/01/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND The diagnosis of primary ciliary dyskinesia (PCD) is difficult and requires a combination of clinical features, nasal nitric oxide testing, cilia ultrastructural analysis by electron microscopy (EM), and genetics. A recently described cytoplasmic ultrastructural change termed "ciliary inclusions" was reported to be diagnostic of PCD; however, no supporting evidence of PCD was provided. In this study, we sought to confirm, or refute, the diagnosis of PCD in subjects with "ciliary inclusions" on EM. METHODS Six subjects from five families with previous lab reports of "ciliary inclusions" on EMs of ciliated cells were identified and evaluated at a Genetic Disorders of Mucociliary Clearance Consortium site. We performed a detailed clinical history, nasal nitric oxide measurement, genetic testing including whole-exome sequencing (WES), and when possible, repeat ciliary EM study. RESULTS Only one of six subjects had multiple and persistent clinical features congruent with PCD. No subject had situs inversus. Only one of six subjects had a very low nasal nitric oxide level. No "ciliary inclusions" were found in three subjects who had a repeat ciliary EM, and ciliary axonemal ultrastructures were normal. Genetic testing, including WES, was negative for PCD-causing genes, and for pathogenic variants in gene pathways that might cause "ciliary inclusions," such as ciliary biogenesis. CONCLUSION "Ciliary Inclusions", in isolation, are not sufficient to diagnosis PCD. If seen, additional studies should be done to pursue an accurate diagnosis.
Collapse
Affiliation(s)
- Timothy J Vece
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kelli M Sullivan
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Kimberlie A Burns
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Susan K Dutcher
- Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri
| | - Roman Yusupov
- Division of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, Florida
| | - Margaret W Leigh
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Abstract
Primary ciliary dyskinesia (PCD) is a recessive genetically heterogeneous disorder of motile cilia with chronic otosinopulmonary disease and organ laterality defects in ∼50% of cases. The prevalence of PCD is difficult to determine. Recent diagnostic advances through measurement of nasal nitric oxide and genetic testing has allowed rigorous diagnoses and determination of a robust clinical phenotype, which includes neonatal respiratory distress, daily nasal congestion, and wet cough starting early in life, along with organ laterality defects. There is early onset of lung disease in PCD with abnormal airflow mechanics and radiographic abnormalities detected in infancy and early childhood.
Collapse
Affiliation(s)
- Michael R Knowles
- Department of Medicine, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Maimoona Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret Leigh
- Department of Pediatrics, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Linck RW, Chemes H, Albertini DF. The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. J Assist Reprod Genet 2016; 33:141-56. [PMID: 26825807 PMCID: PMC4759005 DOI: 10.1007/s10815-016-0652-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/03/2016] [Indexed: 01/08/2023] Open
Affiliation(s)
- Richard W Linck
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Hector Chemes
- Center for Research in Endocrinology, National Research Council, CEDIE-CONICET, Endocrinology Division, Buenos Aires Children's Hospital, Gallo 1330, C1425SEFD, Buenos Aires, Argentina.
| | - David F Albertini
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,The Center for Human Reproduction, New York, NY, USA.
| |
Collapse
|
7
|
Overeem AW, Bryant DM, van IJzendoorn SC. Mechanisms of apical–basal axis orientation and epithelial lumen positioning. Trends Cell Biol 2015; 25:476-85. [DOI: 10.1016/j.tcb.2015.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|