1
|
Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov 2017; 3:17036. [PMID: 28811933 PMCID: PMC5554797 DOI: 10.1038/cddiscovery.2017.36] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/30/2017] [Indexed: 02/08/2023] Open
Abstract
Matrix metalloproteinase (MMP) is defined as an endopeptidase in the extracellular matrix (ECM), which plays essential roles in physiological processes such as organogenesis, wound healing, angiogenesis, apoptosis and motility. MMPs are produced and assembled in the cytoplasm as proenzymes with a cytoplasmic domain and require extracellular activation. MMPs can degrade receptors, extracellular matrix proteins, PARPs and release apoptotic substances. MMPs have been found in the cytosol, organelles and extracellular compartments and recently many types of MMPs have been found in the nucleus. However, the mechanisms and roles of MMPs inside the cell nucleus are still poorly understood. Here we summarized the nuclear localization mechanisms of MMPs and their functions in the nucleus such as apoptosis, tissue remodeling upon injury and cancer progression. Most importantly, we found that nuclear MMPs have evolved to translocate to membrane and target ECM possibly through evolution of nuclear localization signal (NLS), natural selection and anti-apoptotic survival. Thus, the knowledge about the evolution and regulation of nuclear MMPs appears to be essential in understanding a variety of cellular processes along with the development of MMP-targeted therapeutic drugs against the progression of certain diseases.
Collapse
|
2
|
Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J Control Release 2017; 259:62-75. [PMID: 28153760 DOI: 10.1016/j.jconrel.2017.01.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
While commonly known for degradation of the extracellular matrix, matrix metalloproteinases (MMPs) exhibit broad potential for use in targeting of bioactive and imaging agents in cancer treatment. MMPs are upregulated at all stages of expression in cancers. A comprehensive analysis of published literature on expression of all MMP subtypes at the genetic, protein, and activity levels in normal and diseased tissues indicate targeting applicability in a variety of cancers. This expression significantly increases at advanced cancer stages, providing an improved opportunity for controlled release in higher-stage patients. Since MMPs are integral at every stage of metastasis, MMP roles in cancer are discussed with a focus on MMP distribution and mobility within cells and tumors for cancer targeting applications. Several strategies for MMP utilization in targeting - such as matrix degradation, MMP cleavage, MMP binding, and MMP-induced environmental changes - are addressed.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Nithya B Subrahmanyam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Khamis ZI, Iczkowski KA, Man YG, Bou-Dargham MJ, Sang QXA. Evidence for a Proapoptotic Role of Matrix Metalloproteinase-26 in Human Prostate Cancer Cells and Tissues. J Cancer 2016; 7:80-7. [PMID: 26722363 PMCID: PMC4679384 DOI: 10.7150/jca.13067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play intricate roles in cancer progression; some promote invasion and angiogenesis while others suppress tumor growth. For example, human MMP-26/endometase/matrilysin-2 was reported to be either protective or pro-tumorigenic. Our previous reports suggested pro-invasion and anti-inflammation properties in prostate cancer. Here, we provide evidence for a protective role of MMP-26 in the prostate. MMP-26 expression levels in androgen-repressed human prostate cancer (ARCaP) cells, transfected with sense or anti-sense MMP-26 cDNA, are directly correlated with those of the pro-apoptotic marker Bax. Immunohistochemical staining of prostate cancer tissue samples shows similar protein expression patterns, correlating the expression levels of MMP-26 and Bax in benign, neoplastic, and invasive prostate cancer tissues. The MMP-26 protein levels were upregulated in high grade prostate intraepithelial neoplasia (HGPIN) and decreased during the course of disease progression. Further analysis using an indirect terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that many tumor cells expressing MMP-26 were undergoing apoptosis. This study showed that the high level of MMP-26 expression is positively correlated with the presence of apoptotic cells. This pro-apoptotic role of MMP-26 in human prostate cancer cells and tissues may enhance our understanding of the paradoxical roles of MMP-26 in tumor invasion and progression.
Collapse
Affiliation(s)
- Zahraa I Khamis
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Kenneth A Iczkowski
- 2. Department of Pathology and Laboratory of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yan-Gao Man
- 3. The Research Laboratory and International Collaboration, Bon Secours Cancer Institute, Bon Secours Health System, Richmond, VA, USA
| | - Mayassa J Bou-Dargham
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Qing-Xiang Amy Sang
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
4
|
Sawicki G. Intracellular regulation of matrix metalloproteinase-2 activity: new strategies in treatment and protection of heart subjected to oxidative stress. SCIENTIFICA 2013; 2013:130451. [PMID: 24455428 PMCID: PMC3886579 DOI: 10.1155/2013/130451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/03/2013] [Indexed: 05/15/2023]
Abstract
Much is known regarding cardiac energy metabolism in ischemia/reperfusion (I/R) injury. Under aerobic conditions, the heart prefers to metabolize fatty acids, which contribute to 60-80% of the required ATP. During ischemia, anaerobic glycolysis increases and becomes an important source of ATP for preservation of ion gradients. With reperfusion, fatty acid oxidation quickly recovers and again predominates as the major source of mitochondrial oxidative metabolism. Although a number of molecular mechanisms have been implicated in the development of I/R injury, their relative contributions remain to be determined. One such mechanism involves the proteolytic degradation of contractile proteins, such as troponin I (TnI), myosin heavy chain, titin, and the myosin light chains (MLC1 and MLC2) by matrix metalloproteinase-2 (MMP-2). However, very little is known about intracellular regulation of MMP-2 activity under physiological and pathological conditions. Greater understanding of the mechanisms that govern MMP-2 activity may lead to the development of new therapeutic strategies aimed at preservation of the contractile function of the heart subjected to myocardial infarction (MI) or I/R. This review discusses the intracellular mechanisms controlling MMP-2 activity and highlights a new intracellular therapeutic direction for the prevention and treatment of heart injury.
Collapse
Affiliation(s)
- Grzegorz Sawicki
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
- Department of Clinical Chemistry, Medical University of Wroclaw, Wrovasc Integrated Cardiovascular Centre, 50-556 Wroclaw, Poland
- *Grzegorz Sawicki:
| |
Collapse
|
5
|
de Oliveira GA, de Almeida MP, Soares FA, de Almeida Filho GL, Takiya CM, Otazu IB, Nasciutti LE. Metalloproteinases 2 and 9 and their tissue inhibitors 1 and 2 are increased in vulvar lichen sclerosus. Eur J Obstet Gynecol Reprod Biol 2012; 161:96-101. [DOI: 10.1016/j.ejogrb.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/18/2011] [Accepted: 12/01/2011] [Indexed: 11/28/2022]
|
6
|
Giuliano M, Stellavato A, Cammarota M, Lamberti M, Miraglia N, Sannolo N, De Rosa M. Effects of low concentrations of benzene on human lung cells in vitro. Toxicol Lett 2009; 188:130-6. [DOI: 10.1016/j.toxlet.2009.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 12/01/2022]
|
7
|
Venkatraman P, Balakrishnan S, Rao S, Hooda Y, Pol S. A sequence and structure based method to predict putative substrates, functions and regulatory networks of endo proteases. PLoS One 2009; 4:e5700. [PMID: 19492082 PMCID: PMC2683571 DOI: 10.1371/journal.pone.0005700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 04/28/2009] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Proteases play a central role in cellular homeostasis and are responsible for the spatio-temporal regulation of function. Many putative proteases have been recently identified through genomic approaches, leading to a surge in global profiling attempts to characterize their function. Through such efforts and others it has become evident that many proteases play non-traditional roles. Accordingly, the number and the variety of the substrate repertoire of proteases are expected to be much larger than previously assumed. In line with such global profiling attempts, we present here a method for the prediction of natural substrates of endo proteases (human proteases used as an example) by employing short peptide sequences as specificity determinants. METHODOLOGY/PRINCIPAL FINDINGS Our method incorporates specificity determinants unique to individual enzymes and physiologically relevant dual filters namely, solvent accessible surface area--a parameter dependent on protein three-dimensional structure and subcellular localization. By incorporating such hitherto unused principles in prediction methods, a novel ligand docking strategy to mimic substrate binding at the active site of the enzyme, and GO functions, we identify and perform subjective validation on putative substrates of matriptase and highlight new functions of the enzyme. Using relative solvent accessibility to rank order we show how new protease regulatory networks and enzyme cascades can be created. CONCLUSION We believe that our physiologically relevant computational approach would be a very useful complementary method in the current day attempts to profile proteases (endo proteases in particular) and their substrates. In addition, by using functional annotations, we have demonstrated how normal and unknown functions of a protease can be envisaged. We have developed a network which can be integrated to create a proteolytic world. This network can in turn be extended to integrate other regulatory networks to build a system wide knowledge of the proteome.
Collapse
Affiliation(s)
- Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India.
| | | | | | | | | |
Collapse
|
8
|
Tveita A, Rekvig OP, Zykova SN. Glomerular matrix metalloproteinases and their regulators in the pathogenesis of lupus nephritis. Arthritis Res Ther 2008; 10:229. [PMID: 19090960 PMCID: PMC2656222 DOI: 10.1186/ar2532] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lupus nephritis is a major contributor to morbidity and mortality in systemic lupus erythematosus, but little is known about the pathogenic processes that underlie the progressive decay in renal function. A common finding in lupus nephritis is thickening of glomerular basement membranes associated with immune complex deposition. It has been speculated that alterations in the synthesis or degradation of membrane components might contribute to such changes, and thereby to initiation and progression of nephritis through facilitation of immune complex deposition. Matrix metalloproteinases (MMPs) are enzymes that are intimately involved in the turnover of major glomerular basement membrane constituents, including collagen IV and laminins. Alterations in the expression and activity of MMPs have been described in a number of renal diseases, suggesting their relevance to the pathogenesis of various glomerulopathies. The same is true for their natural inhibitors, the tissue inhibitor of metalloproteinase family. Recent data from our group have identified an increase in proteolytic activity within the glomerulus coinciding with the development of proteinuria in the mouse model of systemic lupus erythematosus. (NXB x NZW)F1 Here we review current understanding of MMP/tissue inhibitor of metalloproteinase function within the kidney, and discuss their possible involvement in the development and progression of lupus nephritis.
Collapse
Affiliation(s)
- Anders Tveita
- Department of Biochemistry, Medical Faculty, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|