1
|
Li Y, Wang H, Zhao Z, Yang Y, Meng Z, Qin L. Effects of the interactions between platelets with other cells in tumor growth and progression. Front Immunol 2023; 14:1165989. [PMID: 37153586 PMCID: PMC10158495 DOI: 10.3389/fimmu.2023.1165989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
It has been confirmed that platelets play a key role in tumorigenesis. Tumor-activated platelets can recruit blood cells and immune cells to migrate, establish an inflammatory tumor microenvironment at the sites of primary and metastatic tumors. On the other hand, they can also promote the differentiation of mesenchymal cells, which can accelerate the proliferation, genesis and migration of blood vessels. The role of platelets in tumors has been well studied. However, a growing number of studies suggest that interactions between platelets and immune cells (e.g., dendritic cells, natural killer cells, monocytes, and red blood cells) also play an important role in tumorigenesis and tumor development. In this review, we summarize the major cells that are closely associated with platelets and discuss the essential role of the interaction between platelets with these cells in tumorigenesis and tumor development.
Collapse
|
2
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelets in aging and cancer-"double-edged sword". Cancer Metastasis Rev 2020; 39:1205-1221. [PMID: 32869161 PMCID: PMC7458881 DOI: 10.1007/s10555-020-09926-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Platelets control hemostasis and play a key role in inflammation and immunity. However, platelet function may change during aging, and a role for these versatile cells in many age-related pathological processes is emerging. In addition to a well-known role in cardiovascular disease, platelet activity is now thought to contribute to cancer cell metastasis and tumor-associated venous thromboembolism (VTE) development. Worldwide, the great majority of all patients with cardiovascular disease and some with cancer receive anti-platelet therapy to reduce the risk of thrombosis. However, not only do thrombotic diseases remain a leading cause of morbidity and mortality, cancer, especially metastasis, is still the second cause of death worldwide. Understanding how platelets change during aging and how they may contribute to aging-related diseases such as cancer may contribute to steps taken along the road towards a "healthy aging" strategy. Here, we review the changes that occur in platelets during aging, and investigate how these versatile blood components contribute to cancer progression.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
|
4
|
Mishra SD, Bhavthankar JD, Barpande SR, Mandale MS, Humbe J. The postoperative fall in platelet count in cancer: Mirroring the catastrophe? J Oral Maxillofac Pathol 2018; 22:168-172. [PMID: 30158767 PMCID: PMC6097384 DOI: 10.4103/jomfp.jomfp_174_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction: Progression of cancer requires the growth and invasion of the tumor at its parent site as well as metastasis. Recent studies have shown that tumor cells can aggregate platelets in vitro (a process termed tumor-cell-induced platelet aggregation [TCIPA]), and this aggregation correlates with the metastatic potential of cancer cells in vivo. Platelet depletion or even an inhibition of TCIPA reliably diminishes metastasis. Furthermore, tumor cells bind platelet adhesion receptors of circulating platelets to metastasize more effectively. Studies say that malignant tumors to interact with platelets in the above fashion secrete platelet activating factors which raise the platelet count in malignancy. The study undertaken aims at comparing the preoperative and postoperative platelet levels in patients with benign and malignant neoplasms. Materials and Methods: With an appropriate sample size of patients with benign or malignant neoplasms as per the inclusion and exclusion criteria, a platelet count presurgically and the 7th day postsurgically was advised. Results: In case of patients with benign neoplasms, the postoperative platelet count showed a significant rise attributed to a normal healing response, while in patients with malignant neoplasms, the platelet count appeared to fall down significantly due to the effect of tumor removal and therefore a diminished production of thrombopoietic cytokines. The results obtained were thus consistent with the theories of tumor cell-platelet interactions proposed in the recent literature so far. Conclusion: Postoperatively, the platelet count rises in the patients with the benign tumor as a result of a normal healing response while those in patients with malignant neoplasm apparently appears to fall down due to the effect of tumor removal thus diminishing the production of platelet activating factors.
Collapse
Affiliation(s)
| | - Jyoti D Bhavthankar
- Department of Oral Pathology, Government Dental College, Aurangabad, Maharashtra, India
| | - Suresh R Barpande
- Department of Oral Pathology, Government Dental College, Aurangabad, Maharashtra, India
| | - Mandakini S Mandale
- Department of Oral Pathology, Government Dental College, Aurangabad, Maharashtra, India
| | - Jayanti Humbe
- Department of Oral Pathology, Government Dental College, Aurangabad, Maharashtra, India
| |
Collapse
|
5
|
Tumors arise from the excessive repair of damaged stem cells. Med Hypotheses 2017; 102:112-122. [PMID: 28478815 DOI: 10.1016/j.mehy.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/05/2017] [Indexed: 12/17/2022]
Abstract
Although many hypotheses for tumorigenesis have been proposed, none can explain the occurrence and development of tumors comprehensively until now. We put forward a new hypothesis: tumors arise from the excessive repair of damaged stem cells. There are stem cells in all tissues and organs, and the stem cells have perfect damage repair mechanisms, including damage repair systems and repair-inhibiting systems. Tumors arise from the excessive repair of damaged stem cells, i.e., carcinogens induce stem cell damage, leading to overexpression of damage repair systems, and simultaneous inactivation of repair-inhibiting systems through genetic or non-genetic mechanisms, finally forming tumors. The outcome (forming clinically significant tumors or death) and development (tumor recurrence, metastasis or spontaneous healing) of the tumor cells depends on whether the injury and the excessive repair persists, whether immune surveillance function is normal and the tumor microenvironment is appropriate. This hypothesis not only addresses the issues of where tumor cells arise from, how tumors form and where they go, but also provides a reasonable explanation for many unresolved issues in tumor occurrence, development, metastasis or healing. In addition, this hypothesis could guide the early diagnosis, reasonable treatment and effective prevention of tumors.
Collapse
|
6
|
Viable pregnancies beyond 28 weeks gestation in women with a history of unexplained recurrent miscarriage have reduced platelet function. Eur J Obstet Gynecol Reprod Biol 2016; 200:76-81. [PMID: 26994466 DOI: 10.1016/j.ejogrb.2016.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/24/2016] [Accepted: 02/11/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The aim of this study was to characterize platelet function in pregnant patients with a history of unexplained recurrent miscarriage (RM) in the third trimester of a subsequent viable pregnancy, a time at which platelet dysfunction may be associated with an increased obstetric risk. STUDY DESIGN A prospective study was performed comparing 30 viable pregnancies that had reached at least 28 weeks' gestation amongst patients who had a background history of unexplained RM, with 30 healthy pregnant controls at a similar gestational age. Platelet function was determined by means of platelet aggregation in response to 5 different agonists at multiple concentrations. RESULTS Amongst the 30 RM patients with ongoing viable pregnancies, we demonstrated significantly reduced platelet aggregation compared to the pregnant controls in the third trimester. For three out of five agonists, we demonstrated statistically significantly decreased platelet aggregation and for all five agonists we demonstrated significantly decreased platelet aggregation in the postnatal period. There were no obvious differences in obstetric outcomes. CONCLUSION This study shows that women with a history of unexplained RM have reduced platelet function after 28 weeks' gestation in their subsequent pregnancies compared to healthy pregnant controls, but without this difference leading to any obvious increase in adverse obstetric risk.
Collapse
|
7
|
Cooke NM, Spillane CD, Sheils O, O'Leary J, Kenny D. Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer 2015; 15:627. [PMID: 26353776 PMCID: PMC4565001 DOI: 10.1186/s12885-015-1634-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Platelet-cancer cell interactions play a key role in successful haematogenous metastasis. Disseminated malignancy is the leading cause of death among ovarian cancer patients. It is unknown why different ovarian cancers have different metastatic phenotypes. To investigate if platelet-cancer cell interactions play a role, we characterized the response of ovarian cancer cell lines to platelets both functionally and at a molecular level. METHODS Cell lines 59 M and SK-OV-3 were used as in vitro model systems of metastatic ovarian cancer. Platelet cloaking of each cell line was quantified by flow cytometry. Matrigel invasion chamber assays were used to assess the invasive capacity of the cell lines. The induction of an EMT was assessed by morphology analysis and by gene expression analysis of a panel of 11 EMT markers using TaqMan RT-PCR. RESULTS SK-OV-3 cells adhered to and activated more platelets than 59 M cells (p = 0.0333). Platelets significantly promoted the ability of only SK-OV-3 cells to invade (p ≤ 0.0001). Morphology and transcritpome analysis indicated that platelets induce an epithelial-to-mesenchymal transition phenotype in both cells lines, with a more exaggerated response in SK-OV-3 cells. Next, we investigated if antiplatelet agents could abrogate the platelet-induced aggressive phenotype in SK-OV-3 cells. Both aspirin (p ≤ 0.05) and 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (P2Y12 inhibitor; p ≤ 0.01) significantly decreased their invasion capacity, and effectively reverted invasion to levels comparable to SK-OV-3 cells alone. CONCLUSION While there is increasing evidence for the cancer-protective effect of aspirin, this study suggests P2Y12 inhibition may also play a role. Understanding these complex interactions between platelets and cancer cells could ultimately allow the establishment of therapies tailored to inhibiting metastasis, thus significantly reducing cancer morbidity.
Collapse
Affiliation(s)
- Niamh M Cooke
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland. .,The Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland.
| | - Cathy D Spillane
- The Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland. .,Department of Histopathology, Trinity College Dublin, Dublin, Ireland. .,Pathology Department, Coombe Women's Hospital, Dublin, Ireland.
| | - Orla Sheils
- The Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland. .,Department of Histopathology, Trinity College Dublin, Dublin, Ireland.
| | - John O'Leary
- The Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland. .,Department of Histopathology, Trinity College Dublin, Dublin, Ireland. .,Pathology Department, Coombe Women's Hospital, Dublin, Ireland.
| | - Dermot Kenny
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland. .,The Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland.
| |
Collapse
|
8
|
Yan M, Jurasz P. The role of platelets in the tumor microenvironment: From solid tumors to leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:392-400. [PMID: 26193075 DOI: 10.1016/j.bbamcr.2015.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 12/25/2022]
Abstract
Platelets are increasingly being recognized for promoting tumor growth and metastasis. Many cells derived from solid tumors have the ability to aggregate platelets, and this ability correlates with their metastatic potential. Over the past half century, our understanding of tumor cell-induced platelet aggregation (TCIPA) has grown beyond the simple concept that tumor cell-containing microthrombi mechanically embolize the microvasculature. Tumor cell-activated platelets secrete a multitude of factors that reciprocally act on tumor cells, as well as other cells within the tumor microenvironment; thus, affecting both parenychma and tumor-associated stroma. In this review, we summarize the current knowledge of tumor cell-platelet interactions and their influence on the tumor microenvironment, including how these interactions impact neoplastic epithelial cells, endothelial cells, pericytes, fibroblasts, immune cells, and early metastatic niches. In addition, we review the current knowledge of platelet-cancer cell interactions within hematological malignancies and speculate on how platelets may influence the leukemic microenvironment. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- MengJie Yan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Varon D, Shai E. Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost 2015; 13 Suppl 1:S40-6. [PMID: 26149049 DOI: 10.1111/jth.12976] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelets are known to play a central role in primary hemostasis as well as in the pathophysiology of thrombotic disorders. However, in addition to hemostasis, platelets are involved in a variety of pathophysiological responses including immune responses, inflammation, angiogenesis, tissue regeneration, and cancer metastasis. Recent studies revealed a significant role for platelet-derived microparticles (PMP), in these responses. PMP communicate with, and deliver signals to, other cells, induce signals, and change their phenotype during inflammation, angiogenesis, and tumor metastasis. The current report describes the recent development in this field with a focus on the role of platelets and PMP in all of the above responses.
Collapse
Affiliation(s)
- D Varon
- Coagulation Unit, Department of Hematology, Hadassah Medical Center, Jerusalem, Israel
| | - E Shai
- Coagulation Unit, Department of Hematology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod 2015; 30:812-32. [DOI: 10.1093/humrep/dev025] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
Platelet function in patients with a history of unexplained recurrent miscarriage who subsequently miscarry again. Eur J Obstet Gynecol Reprod Biol 2015; 188:61-5. [PMID: 25790916 DOI: 10.1016/j.ejogrb.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 01/05/2015] [Accepted: 02/06/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study was designed to evaluate platelet aggregation in pregnant women with a history of unexplained recurrent miscarriage (RM) and to compare platelet function in such patients who go on to have either another subsequent miscarriage or a successful pregnancy. STUDY DESIGN A prospective longitudinal study was performed to evaluate platelet function in a cohort of patients with a history of unexplained RM. Platelet reactivity testing was performed at 4-7 weeks gestation, to compare platelet aggregation between those with a subsequent miscarriage and those who had successful live birth outcomes. Platelet aggregation was calculated using a modified assay of light transmission aggregometry with multiple agonists at different concentrations. RESULTS In a cohort of 39 patients with a history of RM, 30 had a successful pregnancy outcome while nine had a subsequent miscarriage again. Women with subsequent miscarriage had reduced platelet aggregation in response to adenosine diphosphate (P value 0.0012) and thrombin receptor activating peptide (P value 0.0334) when compared to those with successful pregnancies. Women with subsequent miscarriages also had a trend towards reduced platelet aggregation in response to epinephrine (P value 0.0568). CONCLUSION Patients with a background history of unexplained RM demonstrate reduced platelet function if they have a subsequent miscarriage compared to those who go on to have a successful pregnancy.
Collapse
|
12
|
Etulain J, Fondevila C, Negrotto S, Schattner M. Platelet-mediated angiogenesis is independent of VEGF and fully inhibited by aspirin. Br J Pharmacol 2014; 170:255-65. [PMID: 23713888 DOI: 10.1111/bph.12250] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Platelets are major players in every step of vessel development through the local delivery of angiogenesis-modulating factors, including the pro-angiogenic protein VEGF and the anti-angiogenic endostatin. Although thrombin is a potent agonist and is highly elevated in angiogenesis-related diseases, studies regarding its action on the release of platelet angiogenic factors are scarce and controversial. Herein, we have investigated the role of thrombin not only in VEGF and endostatin release but also in net platelet angiogenic activity. EXPERIMENTAL APPROACH Human platelets were stimulated with thrombin in the presence of the various inhibitors of the signalling pathways involved in platelet activation. Supernatants/releasates were used to determine the levels of angiogenic molecules and to induce angiogenic responses. KEY RESULTS We found that thrombin induced the secretion of both VEGF and endostatin; however, the overall effect of the releasates was pro-angiogenic as they promoted tubule-like formation and increased the proliferation of endothelial cells. Both responses were only slightly suppressed in the presence of a VEGF receptor-neutralizing antibody. Pharmacological studies revealed that while inhibitors of PKC, p38, ERK1/2, Src kinases or PI3K/Akt exerted only partial inhibitory effects, aspirin fully blocked the pro-angiogenic activity of the releasate. CONCLUSIONS AND IMPLICATIONS In contrast to current belief, platelet pro-angiogenic responses are independent of VEGF and appear to be the result of the combined action of several molecules. Moreover, our data reinforce the notion that aspirin is a good candidate for a therapeutic agent to treat angiogenesis-related diseases.
Collapse
Affiliation(s)
- J Etulain
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
13
|
Yan M, Lesyk G, Radziwon-Balicka A, Jurasz P. Pharmacological regulation of platelet factors that influence tumor angiogenesis. Semin Oncol 2014; 41:370-7. [PMID: 25023352 DOI: 10.1053/j.seminoncol.2014.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In addition to maintaining hemostasis, platelets play an important pathological role driving tumor growth and metastasis. One mechanism by which platelets contribute to tumor growth and metastasis is their potent promotion of angiogenesis. This is accomplished in large part by the numerous factors stored, generated, and released by platelets that have the potential to influence every stage of angiogenesis. In this review, we provide an overview of the many platelet-secreted pro- and anti-angiogenic factors. We examine the basic science and clinical evidence supporting their contributions to tumor angiogenesis. Finally, we review the pharmacological regulation of their release from platelets and discuss the potential of anti-platelet drugs as adjuvant anti-angiogenesis therapy.
Collapse
Affiliation(s)
- MengJie Yan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gabriela Lesyk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Aneta Radziwon-Balicka
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute; University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
|
15
|
Prochazka V, Klosova H, Stetinsky J, Gumulec J, Vitkova K, Salounova D, Dvorackova J, Bielnikova H, Klement P, Levakova V, Ocelka T, Pavliska L, Kovanic P, Klement GL. Addition of platelet concentrate to dermo-epidermal skin graft in deep burn trauma reduces scarring and need for revision surgeries. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 158:242-58. [PMID: 24108222 DOI: 10.5507/bp.2013.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 09/13/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND [corrected] Deep skin burn injuries, especially those on the face, hands, feet, genitalia and perineum represent significant therapeutic challenges. Autologous dermo-epidermal skin grafts (DESG) have become standard of care for treating deep burns. Additionally, human autologous thrombin activated autologous platelet concentrate (APC) has gained acceptance in the setting of wounds. While each of these interventions has been independently shown to accelerate healing, the combination of the two has never been evaluated. We hypothesized that the addition of platelets (source of growth factors and inhibitors necessary for tissue repair) to the DESG (source of progenitor cells and of tissue proteases necessary for spatial and temporal control of growth regulators released from platelets) would create the optimal environment for the reciprocal interaction of cells within the healing tissues. METHODS We used clinical examination (digital photography), standardised scales for evaluating pain and scarring, in combination with blood perfusion (laser Doppler imaging), as well as molecular and laboratory analyses. RESULTS We show for the first time that the combination of APC and DESG leads to earlier relief of pain, and decreased use of analgesics, antipruritics and orthotic devices. Most importantly, this treatment is associated with earlier discharges from hospital and significant cost savings. CONCLUSIONS Our findings indicate that DESG engraftment is facilitated by the local addition of platelets and by systemic thrombocytosis. This local interaction leads to the physiological revascularization at 1-3 months. We observed significant elevation of circulating platelets in early stages of engraftment (1-7 days), which normalized over the subsequent 7 and 90 days.
Collapse
Affiliation(s)
- Vaclav Prochazka
- Institute of Radiodiagnostic and Vice-President for Science and Research, University Hospital Ostrava, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yuan T, Zhang CQ, Wang JHC. Augmenting tendon and ligament repair with platelet-rich plasma (PRP). Muscles Ligaments Tendons J 2013. [PMID: 24367773 DOI: 10.11138/mltj/2013.3.3.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tendon and ligament injuries (TLI) commonly occur in athletes and non-athletes alike, and remarkably debilitate patients' athletic and personal abilities. Current clinical treatments, such as reconstruction surgeries, do not adequately heal these injuries and often result in the formation of scar tissue that is prone to re-injury. Platelet-rich plasma (PRP) is a widely used alternative option that is also safe because of its autologous nature. PRP contains a number of growth factors that are responsible for its potential to heal TLIs effectively. In this review, we provide a comprehensive report on PRP. While basic science studies in general indicate the potential of PRP to treat TLIs effectively, a review of existing literature on the clinical use of PRP for the treatment of TLIs indicates a lack of consensus due to varied treatment outcomes. This suggests that current PRP treatment protocols for TLIs may not be optimal, and that not all TLIs may be effectively treated with PRP. Certainly, additional basic science studies are needed to develop optimal treatment protocols and determine those TLI conditions that can be treated effectively.
Collapse
Affiliation(s)
- Ting Yuan
- Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, USA ; Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai, China
| | - Chang-Qing Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai, China
| | - James H-C Wang
- Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, USA
| |
Collapse
|
17
|
Bahou WF. Genetic dissection of platelet function in health and disease using systems biology. Hematol Oncol Clin North Am 2013; 27:443-63. [PMID: 23714307 DOI: 10.1016/j.hoc.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Technological advances in protein and genetic analysis have altered the means by which platelet disorders can be characterized and studied in health and disease. When integrated into a single analytical framework, these collective technologies are referred to as systems biology, a unified approach that links platelet function with genomic/proteomic studies to provide insight into the role of platelets in broad human disorders such as cardiovascular and cerebrovascular disease. This article reviews the historical progression of these applied technologies to analyze platelet function, and demonstrates how these approaches can be systematically developed to provide new insights into platelet biomarker discovery.
Collapse
Affiliation(s)
- Wadie F Bahou
- Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8151, USA.
| |
Collapse
|
18
|
Moncada de la Rosa C, Radziwon-Balicka A, El-Sikhry H, Seubert J, Ruvolo PP, Radomski MW, Jurasz P. Pharmacologic protein kinase Cα inhibition uncouples human platelet-stimulated angiogenesis from collagen-induced aggregation. J Pharmacol Exp Ther 2013; 345:15-24. [PMID: 23386249 DOI: 10.1124/jpet.112.200881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Platelets promote angiogenesis by releasing angiogenesis-regulating factors from their α-granules upon aggregation. This effect has both physiologic and pathologic significance as it may contribute to carcinogenesis. Platelet α-granule release and aggregation are regulated, in part, via protein kinase C (PKC) α and β signaling. Our study investigated the effects of PKC inhibition on aggregation, angiogenesis-regulator secretion from α-granules, and platelet-stimulated angiogenesis. We hypothesized that selective PKCα inhibition may preferentially suppress angiogenesis-regulator secretion from α-granules but not aggregation, limiting platelet-stimulated angiogenesis. Human platelets were aggregated in the presence of conventional PKC inhibitors myr-FARKGALRQ and Ro 32-0432 (2-{8-[(dimethylamino)methyl]-6,7,8,9-tetrahydropyridol[1,2-α]indol-3-yl}-3-(1-methyl-1H-indol-3-yl)maleimide). Immunofluorescence microscopy of PKC translocation was used to determine the specificity of PKC-inhibitor targeting. Enzyme-linked immunosorbent assay was used to measure vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) release from platelets. Platelet effects on angiogenesis were tested using a capillary-formation assay. Ro 32-0432, but not the peptide inhibitor myr-FARKGALRQ (myristoylated-pseudosubstrate peptide inhibitor), inhibited aggregation in a concentration-dependent manner, while both Ro 32-0432 and myr-FARKGALRQ preferentially suppressed VEGF over TSP-1 secretion. Suppression of angiogenesis-regulator release occurred at inhibitor concentrations that did not significantly affect aggregation. Immunofluorescence microscopy revealed that PKCα targeting to α-granules is inhibited when angiogenesis-regulator secretion is uncoupled from aggregation. At concentrations that uncoupled α-granule release from aggregation, Ro 32-0432 and myr-FARKGALRQ inhibited platelet-stimulated angiogenesis. Hence, selective PKCα inhibition suppresses angiogenesis-regulator release from platelet α-granules with minimal effects on aggregation. Thus, selective PKCα inhibitors may have pharmacologic significance to regulate platelet-promoted angiogenesis.
Collapse
|
19
|
Pietramaggiori G, Scherer S, Orgill DP. The wound watch: an objective staging system for wounds in the diabetic (db/db) mouse model. Methods Mol Biol 2013; 1037:245-54. [PMID: 24029939 DOI: 10.1007/978-1-62703-505-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As in cancer biology, in wound healing there is a need for objective staging systems to decide for the best treatment and predictors of outcome. We developed in the diabetic (db/db) wound healing model, a staging system, the "wound watch," based on the quantification of angiogenesis and cell proliferation in open wounds. In chronic wounds, there is often a lack of cellular proliferation and angiogenesis that leads to impaired healing. The wound watch addresses this by quantifying the proliferative phase of wound healing in two dimensions (cellular division and angiogenesis). The results are plotted in a two-dimensional graph to monitor the course of healing and compare the response to different treatments.
Collapse
Affiliation(s)
- G Pietramaggiori
- Plastic and Reconstructive Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
20
|
Bahou WF. Platelet systems biology using integrated genetic and proteomic platforms. Thromb Res 2012; 129 Suppl 1:S38-45. [PMID: 22682131 DOI: 10.1016/s0049-3848(12)70014-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Platelets retain megakaryocyte-derived mRNA, an abundant and diverse array of miRNAs, and have evolved unique adaptive signals for maintenance of genetic and protein diversity. Quiescent platelets generally display minimal translational activity, although maximally-activated platelets retain the capacity for protein synthesis. Progressive data using multiple platelet activation models clearly demonstrate that platelet responses to the majority (if not all) agonists are highly variable within the population, demonstrating considerable heritability in siblings, twins, and families with premature coronary artery disease. Research from our laboratory has adapted global profiling strategies to close the knowledge gap currently existing between genetic variability and platelet phenotypic responsiveness. We have applied iterative algorithms for genetic biomarker discovery and class prediction models of platelet phenotypes, with the goal of systematically analyzing integrated mRNA/miRNA/proteomic datasets for identification of regulatory networks that define phenotypic variability in platelet responses. This approach has the potential to define platelet genetic biomarkers predictive of thrombohemorrhagic outcomes in both normal and widely disparate clinical conditions.
Collapse
Affiliation(s)
- Wadie F Bahou
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8151, USA.
| |
Collapse
|
21
|
Radziwon-Balicka A, Moncada de la Rosa C, Jurasz P. Platelet-associated angiogenesis regulating factors: a pharmacological perspective. Can J Physiol Pharmacol 2012; 90:679-88. [DOI: 10.1139/y2012-036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Platelets, in addition to maintaining hemostasis, also stimulate angiogenesis by generating and releasing, upon activation, factors that promote the growth of new blood vessels. To date, at least 20 angiogenesis-regulating factors have been identified in platelets, including both promoters and inhibitors. Platelet-derived angiogenesis regulators promote angiogenesis during wound healing, tumor growth, and in response to ischemia. Within platelets, angiogenesis regulators are primarily stored in α-granules, but are also found in the cytosol or derived from membrane lipids. Their release can be inhibited pharmacologically by anti-platelet agents, which consequently suppress platelet-stimulated angiogenesis. Several years ago, our research group discovered that platelets generate the angiogenesis inhibitor angiostatin independent of the activation state of platelets, and that platelet-derived angiostatin serves to limit the angiogenesis-stimulating effects of platelets. In this review, we summarize the current knowledge of platelet-associated angiogenesis regulators, how they impact angiogenesis, and how they are controlled pharmacologically.
Collapse
Affiliation(s)
- Aneta Radziwon-Balicka
- Faculty of Pharmacy and Pharmaceutical Sciences, 3-142E Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Cesar Moncada de la Rosa
- Faculty of Pharmacy and Pharmaceutical Sciences, 3-142E Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, 3-142E Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
22
|
Abstract
Several observations have led us to a new hypothesis for cancer mechanism. First, that cancer appears only on those multicellular organisms with complicated wound-healing capacities. Second, that wounds considered as risk factors can be identified in all cancers in clinics. And finally, that oncogene activation appears not only in cancer, but also in normal physiology and noncancer pathology processes. Our proposed hypothesis is that cancer is a natural wound healing-related process, which includes oncogene activations, cytokine secretions, stem cell recruitment differentiation, and tissue remodeling. Wounds activate oncogenes of some cells and the latter secrete cytokines to recruit stem cells to heal the wounds. However, if the cause of the wound or if the wound persists, such as under the persistent UV and carcinogen exposures, the continuous wound healing process will lead to a clinical cancer mass. There is no system in nature to stop or reverse the wound healing process in the middle stage when the wound exists. The outcome of the cancer mechanism is either healing the wound or exhausting the whole system (death). The logic of this cancer mechanism is consistent with the rationales of the other physiological metabolisms in the body-for survival. This hypothesis helps to understand many cancer mysteries derived from the mutation theory, such as why cancer only exists in a small proportion of multicellular organisms, although they are all under potential mutation risks during DNA replications. The hypothesis can be used to interpret and guide cancer prevention, recurrence, metastasis, in vitro and in vivo studies, and personalized treatments.
Collapse
Affiliation(s)
- Xiaolong Meng
- Breast Medical Oncology Department, MD Anderson Cancer Center, 1155 Hermann Pressler Dr., Houston, TX 77030 USA
| | - Jie Zhong
- Neurosurgery Department, MD Anderson Cancer Center, 1400 Holcombe Blvd., Houston, TX 77030 USA
| | - Shuying Liu
- Breast Medical Oncology Department, MD Anderson Cancer Center, 1155 Hermann Pressler Dr., Houston, TX 77030 USA
| | - Mollianne Murray
- Systems Biology Department, MD Anderson Cancer Center, 7435 Fannin St., Houston, TX 77054 USA
| | - Ana M. Gonzalez-Angulo
- Breast Medical Oncology Department, MD Anderson Cancer Center, 1155 Hermann Pressler Dr., Houston, TX 77030 USA
| |
Collapse
|
23
|
Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:6543-52. [PMID: 21525379 DOI: 10.4049/jimmunol.1002788] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microparticles (MP) shed by platelets (PLT) during storage have procoagulant activities, but little is known about their properties to modify inflammation or immunity. In this study, we studied the capacity of MP present in PLT concentrates to alter the function of macrophages and dendritic cells (DC). The size of the purified MP was between 100 and 1000 nm, and they expressed phosphatidylserine; surface proteins of PLT (CD61, CD36, CD47), including complement inhibitors (CD55, CD59), but not CD63; and proteins acquired from plasma (C1q, C3 fragments, factor H). These characteristics suggest that the MP shed by PLT are formed by budding from the cell surface, corresponding to ectosomes. The purified PLT ectosomes (PLT-Ect) reduced the release of TNF-α and IL-10 by macrophages activated with LPS or zymosan A. In addition, PLT-Ect induced the immediate release of TGF-β from macrophages, a release that was not modified by LPS or zymosan A. Macrophages had a reduced TNF-α release even 24 h after their exposure to PLT-Ect, suggesting that PLT-Ect induced a modification of the differentiation of macrophages. Similarly, the conventional 6-d differentiation of monocytes to immature DC by IL-4 and GM-CSF was modified by the presence of PLT-Ect during the first 2 d. Immature DC expressed less HLA-DP DQ DR and CD80 and lost part of their phagocytic activity, and their LPS-induced maturation was downmodulated when exposed to PLT-Ect. These data indicate that PLT-Ect shed by stored PLT have intrinsic properties that modify macrophage and DC differentiation toward less reactive states.
Collapse
Affiliation(s)
- Salima Sadallah
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland.
| | | | | | | |
Collapse
|
24
|
Abstract
Traditionally viewed as major cellular components in hemostasis and thrombosis, the contribution of platelets to the progression of cancer is an emerging area of research interest. Complex interactions between tumor cells and circulating platelets play an important role in cancer growth and dissemination, and a growing body of evidence supports a role for physiologic platelet receptors and platelet agonists in cancer metastases and angiogenesis. Platelets provide a procoagulant surface facilitating amplification of cancer-related coagulation, and can be recruited to shroud tumor cells, thereby shielding them from immune responses, and facilitate cancer growth and dissemination. Experimental blockade of key platelet receptors, such as GP1b/IX/V, GPIIbIIIa and GPVI, has been shown to attenuate metastases. Platelets are also recognized as dynamic reservoirs of proangiogenic and anti-angiogenic proteins that can be manipulated pharmacologically. A bidirectional relationship between platelets and tumors is also seen, with evidence of 'tumor conditioning' of platelets. The platelet as a reporter of malignancy and a targeted delivery system for anticancer therapy has also been proposed. The development of platelet inhibitors that influence malignancy progression and clinical testing of currently available antiplatelet drugs represents a promising area of targeted cancer therapy.
Collapse
Affiliation(s)
- N M Bambace
- Division of Hematology and Oncology, Department of Medicine, University of Vermont, Burlington, VT 05401, USA
| | | |
Collapse
|
25
|
Fang S, Salven P. Stem cells in tumor angiogenesis. J Mol Cell Cardiol 2011; 50:290-5. [DOI: 10.1016/j.yjmcc.2010.10.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 01/01/2023]
|
26
|
Fiorina P, Pietramaggiori G, Scherer SS, Jurewicz M, Mathews JC, Vergani A, Thomas G, Orsenigo E, Staudacher C, La Rosa S, Capella C, Carothers A, Zerwes HG, Luzi L, Abdi R, Orgill DP. The Mobilization and Effect of Endogenous Bone Marrow Progenitor Cells in Diabetic Wound Healing. Cell Transplant 2010; 19:1369-81. [DOI: 10.3727/096368910x514288] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Diabetic patients suffer from impaired wound healing, characterized by only modest angiogenesis and cell proliferation. Stem cells may stimulate healing, but little is known about the kinetics of mobilization and function of bone marrow progenitor cells (BM-PCs) during diabetic wound repair. The objective of this study was to investigate the kinetics of BM-PC mobilization and their role during early diabetic wound repair in diabetic db/db mice. After wounding, circulating hematopoietic stem cells (Lin-c-Kit+Sca-1+) stably increased in the periphery and lymphoid tissue of db/db mice compared to unwounded controls. Peripheral endothelial progenitor cells (CD34+VEGFR+) were 2.5- and 3.5-fold increased on days 6 and 10 after wounding, respectively. Targeting the CXCR4—CXCL12 axis induced an increased release and engraftment of endogenous BM-PCs that was paralleled by an increased expression of CXCL12/SDF-1α in the wounds. Increased levels of peripheral and engrafted BM-PCs corresponded to stimulated angiogenesis and cell proliferation, while the addition of an agonist (GM-CSF) or an antagonist (ACK2) did not further modulate wound healing. Macroscopic histological correlations showed that increased levels of stem cells corresponded to higher levels of wound reepithelialization. After wounding, a natural release of endogenous BM-PCs was shown in diabetic mice, but only low levels of these cells homed in the healing tissue. Higher levels of CXCL12/SDF-1α and circulating stem cells were required to enhance their engraftment and biological effects. Despite controversial data about the functional impairment of diabetic BM-PCs, in this model our data showed a residual capacity of these cells to trigger angiogenesis and cell proliferation.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Division of Nephrology, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine & Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Pietramaggiori
- Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, University of Geneva, Geneva, Switzerland
| | - Saja S. Scherer
- Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, University of Geneva, Geneva, Switzerland
| | - Mollie Jurewicz
- Transplantation Research Center, Division of Nephrology, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmine C. Mathews
- Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Vergani
- Transplantation Research Center, Division of Nephrology, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine & Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Gebhard Thomas
- Autoimmunity, Transplantation and Inflammation and Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Elena Orsenigo
- Department of Medicine & Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Staudacher
- Department of Medicine & Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano La Rosa
- Department of Pathology, Ospedale di Circolo and Department of Human Morphology, University of Insubria, Varese, Italy
| | - Carlo Capella
- Department of Pathology, Ospedale di Circolo and Department of Human Morphology, University of Insubria, Varese, Italy
| | - Adelaide Carothers
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hans-Gunter Zerwes
- Autoimmunity, Transplantation and Inflammation and Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Livio Luzi
- Facolta di Scienze Motorie, Università di Milano, Milan, Italy
| | - Reza Abdi
- Transplantation Research Center, Division of Nephrology, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis P. Orgill
- Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Comments on “Platelet-rich plasma in burns”. Burns 2010; 36:944-5; author reply 945. [DOI: 10.1016/j.burns.2009.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 08/10/2009] [Accepted: 08/12/2009] [Indexed: 11/17/2022]
|
28
|
Almog N, Klement GL. Platelet proteome and tumor dormancy: can platelets content serve as predictive biomarkers for exit of tumors from dormancy? Cancers (Basel) 2010; 2:842-58. [PMID: 24281097 PMCID: PMC3835108 DOI: 10.3390/cancers2020842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/30/2010] [Accepted: 05/05/2010] [Indexed: 01/05/2023] Open
Abstract
Although tumor dormancy is highly prevalent, the underling mechanisms are still mostly unknown. It is unclear which lesions will progress and become a disseminated cancer, and which will remain dormant and asymptomatic. Yet, an improved ability to predict progression would open the possibility of timely treatment and improvement in outcomes. We have recently described the ability of platelets to selectively uptake angiogenesis regulators very early in tumor growth, and proposed their use as an early marker of malignancy. In this review we will summarize current knowledge about these processes and will discuss the possibility of using platelet content to predict presence of occult tumors.
Collapse
Affiliation(s)
- Nava Almog
- Center of Cancer Systems Biology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Giannoula Lakka Klement
- Center of Cancer Systems Biology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|