1
|
Tang C, Teymur A, Wu T. Urinary Immune Complexes Reflect Renal Pathology in Lupus Nephritis. Diagnostics (Basel) 2024; 14:2787. [PMID: 39767148 PMCID: PMC11727095 DOI: 10.3390/diagnostics14242787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE), involving immune complex deposition in the kidneys. While renal biopsy is the diagnostic gold standard, its invasiveness limits frequent use, driving the need for non-invasive urinary biomarkers to monitor disease progression and response to treatment. This study aimed to identify and validate urinary biomarkers for LN. METHODS Data from 10 LN-related omics databases, including urine, PBMCs, and kidney tissue, were analyzed. Differentially expressed proteins (DEPs) and genes (DEGs) were identified, and candidate biomarkers were validated via ELISA in an independent cohort of 87 urine samples. RESULTS We identified 78 biomarkers, with 14 overlapping across transcriptomic categories. Novel urinary biomarkers, including SERPING1, SLPI, and CD48, were validated. Urinary CD163, VCAM1, and ALCAM levels showed significant differences between LN and healthy controls, while urinary immune complexes (ICx) demonstrated superior diagnostic performance, with urinary ALCAM-ICx and CCL21-ICx achieving the highest AUC values. CONCLUSIONS Our findings highlight the potential of urinary immune complexes and antigens as non-invasive biomarkers for LN. ALCAM, CD163, and SERPING1-ICx, in particular, were found as promising candidates for a urinary biomarker panel to aid in the diagnosis and monitoring of LN.
Collapse
Affiliation(s)
| | | | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (C.T.); (A.T.)
| |
Collapse
|
2
|
Ji Q, Zhu H, Qin Y, Zhang R, Wang L, Zhang E, Zhou X, Meng R. GP60 and SPARC as albumin receptors: key targeted sites for the delivery of antitumor drugs. Front Pharmacol 2024; 15:1329636. [PMID: 38323081 PMCID: PMC10844528 DOI: 10.3389/fphar.2024.1329636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Albumin is derived from human or animal blood, and its ability to bind to a large number of endogenous or exogenous biomolecules makes it an ideal drug carrier. As a result, albumin-based drug delivery systems are increasingly being studied. With these in mind, detailed studies of the transport mechanism of albumin-based drug carriers are particularly important. As albumin receptors, glycoprotein 60 (GP60) and secreted protein acidic and rich in cysteine (SPARC) play a crucial role in the delivery of albumin-based drug carriers. GP60 is expressed on vascular endothelial cells and enables albumin to cross the vascular endothelial cell layer, and SPARC is overexpressed in many types of tumor cells, while it is minimally expressed in normal tissue cells. Thus, this review supplements existing articles by detailing the research history and specific biological functions of GP60 or SPARC and research advances in the delivery of antitumor drugs using albumin as a carrier. Meanwhile, the deficiencies and future perspectives in the study of the interaction of albumin with GP60 and SPARC are also pointed out.
Collapse
Affiliation(s)
- Qingzhi Ji
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Yuting Qin
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Ruiya Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Lei Wang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Run Meng
- Department of Immunology, Medical School, Nantong University, Nantong, China
| |
Collapse
|
3
|
Zhang R, Saredy J, Shao Y, Yao T, Liu L, Saaoud F, Yang WY, Sun Y, Johnson C, Drummer C, Fu H, Lu Y, Xu K, Liu M, Wang J, Cutler E, Yu D, Jiang X, Li Y, Li R, Wang L, Choi ET, Wang H, Yang X. End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease progression. Redox Biol 2020; 34:101460. [PMID: 32179051 PMCID: PMC7327976 DOI: 10.1016/j.redox.2020.101460] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background The molecular mechanisms underlying chronic kidney disease (CKD) transition to end-stage renal disease (ESRD) and CKD acceleration of cardiovascular and other tissue inflammations remain poorly determined. Methods We conducted a comprehensive data analyses on 7 microarray datasets in peripheral blood mononuclear cells (PBMCs) from patients with CKD and ESRD from NCBI-GEO databases, where we examined the expressions of 2641 secretome genes (SG). Results 1) 86.7% middle class (molecular weight >500 Daltons) uremic toxins (UTs) were encoded by SGs; 2) Upregulation of SGs in PBMCs in patients with ESRD (121 SGs) were significantly higher than that of CKD (44 SGs); 3) Transcriptomic analyses of PBMC secretome had advantages to identify more comprehensive secretome than conventional secretomic analyses; 4) ESRD-induced SGs had strong proinflammatory pathways; 5) Proinflammatory cytokines-based UTs such as IL-1β and IL-18 promoted ESRD modulation of SGs; 6) ESRD-upregulated co-stimulation receptors CD48 and CD58 increased secretomic upregulation in the PBMCs, which were magnified enormously in tissues; 7) M1-, and M2-macrophage polarization signals contributed to ESRD- and CKD-upregulated SGs; 8) ESRD- and CKD-upregulated SGs contained senescence-promoting regulators by upregulating proinflammatory IGFBP7 and downregulating anti-inflammatory TGF-β1 and telomere stabilizer SERPINE1/PAI-1; 9) ROS pathways played bigger roles in mediating ESRD-upregulated SGs (11.6%) than that in CKD-upregulated SGs (6.8%), and half of ESRD-upregulated SGs were ROS-independent. Conclusions Our analysis suggests novel secretomic upregulation in PBMCs of patients with CKD and ESRD, act synergistically with uremic toxins, to promote inflammation and potential disease progression. Our findings have provided novel insights on PBMC secretome upregulation to promote disease progression and may lead to the identification of new therapeutic targets for novel regimens for CKD, ESRD and their accelerated cardiovascular disease, other inflammations and cancers. (Total words: 279).
Collapse
Affiliation(s)
- Ruijing Zhang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China; Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tian Yao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fatma Saaoud
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Yu Sun
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Charles Drummer
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yifan Lu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Keman Xu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ming Liu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jirong Wang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Elizabeth Cutler
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yafeng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Lihua Wang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Eric T Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Srivastava T, Thiagarajan G, Alon US, Sharma R, El-Meanawy A, McCarthy ET, Savin VJ, Sharma M. Role of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract. Nephrol Dial Transplant 2018; 32:759-765. [PMID: 28339567 DOI: 10.1093/ndt/gfw430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) including solitary kidney constitute the main cause of progressive chronic kidney disease (CKD) in children. Children born with CAKUT develop signs of CKD only during adolescence and do not respond to renin-angiotensin-aldosterone system blockers. Early cellular changes underlying CKD progression to end-stage renal disease by early adulthood are not well understood. The mechanism of maladaptive hyperfiltration that occurs from loss of functional nephrons, including solitary kidney, is not clear. We re-examine the phenomenon of hyperfiltration in the context of biomechanical forces with special reference to glomerular podocytes. Capillary stretch exerts tensile stress on podocytes through the glomerular basement membrane. The flow of ultrafiltrate over the cell surface directly causes fluid flow shear stress (FFSS) on podocytes. FFSS on the podocyte surface increases 1.5- to 2-fold in animal models of solitary kidney and its effect on podocytes is a subject of ongoing research. Podocytes (i) are mechanosensitive to tensile and shear forces, (ii) use prostaglandin E2, angiotensin-II or nitric oxide for mechanoperception and (iii) use specific signaling pathways for mechanotransduction. We discuss (i) the nature of and differences in cellular responses to biomechanical forces, (ii) methods to study biomechanical forces and (iii) effects of biomechanical forces on podocytes and glomeruli. Future studies on FFSS will likely identify novel targets for strategies for early intervention to complement and strengthen the current regimen for treating children with CAKUT.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA.,Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Ganesh Thiagarajan
- School of Computing and Engineering, University of Missouri at Kansas City, MO, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ellen T McCarthy
- Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mukut Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| |
Collapse
|
5
|
Haase R, Potthoff SA, Meyer-Schwesinger C, Frosch C, Wiech T, Panzer U, Königshausen E, Stegbauer J, Sellin L, Rump LC, Quack I, Woznowski M. A novel in vivo method to quantify slit diaphragm protein abundance in murine proteinuric kidney disease. PLoS One 2017; 12:e0179217. [PMID: 28604827 PMCID: PMC5467901 DOI: 10.1371/journal.pone.0179217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Injury of the glomerular filter causes proteinuria by disrupting the sensitive interplay of the glomerular protein network. To date, studies of the expression and trafficking of glomerular proteins have been mostly limited to in vitro or histologic studies. Here, we report a novel in vivo biotinylation assay that allows the quantification of surface expression of glomerular proteins in mice. Kidneys were perfused in situ with biotin before harvest. Afterwards glomeruli were isolated and lyzed. The protein of interest was separated by immunoprecipitation and the amount of surface-expressed protein was quantified by Western blot analysis with streptavidin staining. As proof-of-concept, we examined the presence of nephrin in the slit diaphragm in two well-established murine models of proteinuric kidney disease: nephrotoxic nephritis and adriamycin nephropathy. In proteinuric animals, significantly less nephrin was detected in the slit diaphragm. When proteinuria decreased once again during the course of disease, the amount of surface nephrin returned to the baseline. Our present results suggest that our assay is a valuable tool to study the glomerular filter in proteinuric kidney diseases. Note that the assay is not limited to proteins expressed in the slit diaphragm, and all surface proteins that are accessible to biotin perfusion and immunoprecipitation qualify for this analysis.
Collapse
Affiliation(s)
- Raphael Haase
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | - Clara Frosch
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Hospital Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Medical Clinic University Hospital Eppendorf, Hamburg, Germany
| | - Eva Königshausen
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lorenz Sellin
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lars Christian Rump
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Ivo Quack
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| | - Magdalena Woznowski
- Department of Nephrology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|