1
|
Liu XR, Li M, Hao QQ, Yu YJ, Liao C, Yu R, Kong DL, Wang Y. Unraveling cysteinyl leukotrienes and their receptors in inflammation through the brain-gut-lung axis. Virulence 2025; 16:2502555. [PMID: 40351036 PMCID: PMC12077450 DOI: 10.1080/21505594.2025.2502555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Cysteinyl leukotrienes (CysLTs), as potent lipid inflammatory mediators, play a pivotal role in systemic multi-organ inflammation and inter-organ communication through interactions with their receptors (CysLTRs). However, However, the function of CysLT3R is unclear and lacks a network of cross-organ metabolite interactions, and the clinical use of leukotriene receptor antagonists (LTRAs) has certain limitations. This review systematically synthesizes existing evidence and proposes future directions by clarifying receptor subtype specificity, optimizing targeted therapies, exploring CysLTs' applications in neuroimmunology, and elucidating the dual roles of CysLTs in chronic inflammation. It is indicated that CysLTs activate eosinophils, mast cells, and airway tuft cells, driving type 2 immune responses and mucus secretion in the lungs, thereby exacerbating respiratory diseases such as asthma. In the nervous system, CysLTs aggravate neurodegenerative disorders like cerebral ischemia and Alzheimer's disease by disrupting the blood-brain barrier, promoting glial activation, and inducing neuronal damage. In the gut, CysLTs regulate anti-helminth immunity via the tuft cell-ILC2 pathway and collaborate with prostaglandin D2 (PGD2) to modulate bile excretion and mucosal protection. Furthermore, CysLTs mediate communication through the gut-lung and gut-brain axes via metabolites such as succinate, contributing to cross-organ inflammatory regulation. In conclusion, this review highlights the complex roles of CysLTs in chronic inflammation, providing a theoretical foundation for precise intervention in multi-organ inflammatory diseases, which provides a theoretical framework for precision interventions in multi-organ inflammatory diseases and inspires interdisciplinary breakthroughs.
Collapse
Affiliation(s)
- Xiao-Ru Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian-Qian Hao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Diaz BL, Bandeira-Melo C. Parasitic infections: A new frontier for PGD 2 functions. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100078. [PMID: 38826690 PMCID: PMC11140190 DOI: 10.1016/j.crimmu.2024.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024] Open
Abstract
Prostaglandin (PG)D2 is produced and/or triggered by different parasites to modulate the course of the infection. These findings position PGD2 as a therapeutic target and suggest potential beneficial effects of repositioned drugs that target its synthesis or receptor engagement. However, recent in vivo data may suggest a more nuanced role and warrants further investigation of the role of PGD2 during the full course and complexity of parasitic infections.
Collapse
Affiliation(s)
- Bruno L. Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
3
|
Gulen T. Using the Right Criteria for MCAS. Curr Allergy Asthma Rep 2024; 24:39-51. [PMID: 38243020 PMCID: PMC10866766 DOI: 10.1007/s11882-024-01126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
PURPOSE OF REVIEW The current article aims to provide a comprehensive update on diagnostic criteria for mast cell activation syndrome (MCAS), addressing challenges in diagnosing and classifying MCAS and its variants. RECENT FINDINGS In recent years, there has been a significant increase in our knowledge regarding the underlying mechanisms responsible for the activation of mast cells (MCs) in various pathological conditions. Furthermore, a set of criteria and a classification for MCASs have been established. MCAS is characterized by the presence of typical clinical symptoms, a substantial elevation in serum tryptase levels during an attack compared to the patient's baseline tryptase levels, and a response to MC mediator-targeting therapy. In this report, a thorough examination was conducted on the contemporary literature relating to MCAS, with a focus on comparing the specificity, sensitivity, and robustness of MCAS-related parameters within proposals for diagnosing and classifying MCAS and its variants. Moreover, the significance of employing specific consensus criteria in the assessment and categorization of MCAS in individual patients was underscored, due to the escalating occurrence of patients receiving a misdiagnosis of MCAS based on nonspecific criteria.
Collapse
Affiliation(s)
- Theo Gulen
- Department of Respiratory Medicine and Allergy, K85, Karolinska University Hospital Huddinge, Stockholm, SE-14186, Sweden.
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
- Clinical Lung and Allergy Research Unit, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Mastocytosis Centre Karolinska, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
4
|
Li Y, Li L, Tian Y, Luo J, Huang J, Zhang L, Zhang J, Li X, Hu L. Identification of novel immune subtypes and potential hub genes of patients with psoriasis. J Transl Med 2023; 21:182. [PMID: 36890558 PMCID: PMC9993638 DOI: 10.1186/s12967-023-03923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/25/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Psoriasis is a common, chronic and relapsing immune-related inflammatory dermal disease. Patients with psoriasis suffering from the recurrences is mainly caused by immune response disorder. Thus, our study is aimed to identify novel immune subtypes and select targeted drugs for the precision therapy in different subtypes of psoriasis. METHODS Differentially expressed genes of psoriasis were identified from the Gene Expression Omnibus database. Functional and disease enrichment were performed by Gene Set Enrichment Analysis and Disease Ontology Semantic and Enrichment analysis. Hub genes of psoriasis were selected from protein-protein interaction networks using Metascape database. The expression of hub genes was validated in human psoriasis samples by RT-qPCR and immunohistochemistry. Further, novel immune subtypes of psoriasis were identified by ConsensusClusterPlus package and its association with hub genes were calculated. Immune infiltration analysis was performed, and its candidate drugs were evaluated by Connectivity Map analysis. RESULTS 182 differentially expressed genes of psoriasis were identified from GSE14905 cohort, in which 99 genes were significantly up-regulated and 83 genes were down-regulated. We then conducted functional and disease enrichment in up-regulated genes of psoriasis. Five potential hub genes of psoriasis were obtained, including SOD2, PGD, PPIF, GYS1 and AHCY. The high expression of hub genes was validated in human psoriasis samples. Notably, two novel immune subtypes of psoriasis were determined and defined as C1 and C2. Bioinformatic analysis showed C1 and C2 had different enrichment in immune cells. Further, candidate drugs and mechanism of action that applicable to different subtypes were evaluated. CONCLUSIONS Our study identified two novel immune subtypes and five potential hub genes of psoriasis. These findings might give insight into the pathogenesis of psoriasis and provide effective immunotherapy regimens for the precise treatment of psoriasis.
Collapse
Affiliation(s)
- Yingxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Lin Li
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Yao Tian
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Luo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Xiaoxia Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Ghanem MH, Shih AJ, Khalili H, Werth EG, Chakrabarty JK, Brown LM, Simpfendorfer KR, Gregersen PK. Proteomic and Single-Cell Transcriptomic Dissection of Human Plasmacytoid Dendritic Cell Response to Influenza Virus. Front Immunol 2022; 13:814627. [PMID: 35401570 PMCID: PMC8984281 DOI: 10.3389/fimmu.2022.814627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells [pDCs] represent a rare innate immune subset uniquely endowed with the capacity to produce substantial amounts of type-I interferons. This function of pDCs is critical for effective antiviral defenses and has been implicated in autoimmunity. While IFN-I and select cytokines have been recognized as pDC secreted products, a comprehensive agnostic profiling of the pDC secretome in response to a physiologic stimulus has not been reported. We applied LC-MS/MS to catalogue the repertoire of proteins secreted by pDCs in the unperturbed condition and in response to challenge with influenza H1N1. We report the identification of a baseline pDC secretome, and the repertoire of virus-induced proteins including most type-I interferons, various cytokines, chemokines and granzyme B. Additionally, using single-cell RNA-seq [scRNA-seq], we perform multidimensional analyses of pDC transcriptional diversity immediately ex vivo and following stimulation. Our data evidence preexisting pDC heterogeneity, with subsequent highly specialized roles within the pDC population upon stimulation ranging from dedicated cytokine super-producers to cells with APC-like traits. Dynamic expression of transcription factors and surface markers characterize subclusters within activated pDCs. Integrating the proteomic and transcriptomic datasets confirms the pDC-subcluster origin of the proteins identified in the secretome. Our findings represent the most comprehensive molecular characterization of primary human pDCs at baseline, and in response to influenza virus, reported to date.
Collapse
Affiliation(s)
- Mustafa H Ghanem
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Andrew J Shih
- The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Houman Khalili
- The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Jayanta K Chakrabarty
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Kim R Simpfendorfer
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Peter K Gregersen
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
6
|
Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-Specific Molecular Markers and Heterogeneity in Type 2 Innate Lymphoid Cells. Front Immunol 2021; 12:757967. [PMID: 34759931 PMCID: PMC8573327 DOI: 10.3389/fimmu.2021.757967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
7
|
Gülen T, Akin C, Bonadonna P, Siebenhaar F, Broesby-Olsen S, Brockow K, Niedoszytko M, Nedoszytko B, Oude Elberink HNG, Butterfield JH, Sperr WR, Alvarez-Twose I, Horny HP, Sotlar K, Schwaab J, Jawhar M, Zanotti R, Nilsson G, Lyons JJ, Carter MC, George TI, Hermine O, Gotlib J, Orfao A, Triggiani M, Reiter A, Hartmann K, Castells M, Arock M, Schwartz LB, Metcalfe DD, Valent P. Selecting the Right Criteria and Proper Classification to Diagnose Mast Cell Activation Syndromes: A Critical Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3918-3928. [PMID: 34166845 DOI: 10.1016/j.jaip.2021.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022]
Abstract
In recent years, knowledge about mechanisms underlying mast cell activation (MCA) and accumulation in various pathologic conditions increased substantially. In addition, criteria and a classification of MCA syndromes (MCASs) have been set forth. MCAS is defined by typical clinical symptoms, a substantial increase in serum tryptase level during an attack over the patient's baseline tryptase, and a response of the symptoms to drugs targeting mast cells, mediator production, and/or mediator effects. Alternative diagnostic criteria of MCAS have also been suggested, but these alternative criteria often lack specificity and validation. In this report, we critically review the contemporary literature relating to MCAS and compare the specificity, sensitivity, and strength of MCAS-related parameters within proposals to diagnose and classify MCAS and its variants. Furthermore, we highlight the need to apply specific consensus criteria in the evaluation and classification of MCAS in individual patients. This is an urgent and important medical necessity because as an increasing number of patients are being given a misdiagnosis of MCAS based on nonspecific criteria, which contributes to confusion and frustration by patients and caregivers and sometimes may delay recognition and treatment of correct medical conditions that often turn out to be unrelated to MCA.
Collapse
Affiliation(s)
- Theo Gülen
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | | | - Frank Siebenhaar
- Dermatological Allergology, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Germany
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Boguslaw Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland; Invicta Fertility and Reproductive Center, Molecular Laboratory, Sopot, Poland
| | - Hanneke N G Oude Elberink
- Department of Allergology, GRIAC Research Institute, University of Groningen, University Medical Center of Groningen, Groningen, The Netherlands
| | | | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Ivan Alvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) and CIBERONC, Hospital Virgen del Valle, Toledo, Spain
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Roberta Zanotti
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Gunnar Nilsson
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Melody C Carter
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Olivier Hermine
- Imagine Institute Université Paris Descartes, Sorbonne, Paris Cité, Centre National de Référence des Mastocytoses, Paris, France
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCC; CSIC/USAL), IBSAL, CIBERONC and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mariana Castells
- Brigham and Women's Hospital, Mastocytosis Center, Harvard Medical School, Boston, Mass
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Dissection of intercellular communication using the transcriptome-based framework ICELLNET. Nat Commun 2021; 12:1089. [PMID: 33597528 PMCID: PMC7889941 DOI: 10.1038/s41467-021-21244-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cell-to-cell communication can be inferred from ligand–receptor expression in cell transcriptomic datasets. However, important challenges remain: global integration of cell-to-cell communication; biological interpretation; and application to individual cell population transcriptomic profiles. We develop ICELLNET, a transcriptomic-based framework integrating: 1) an original expert-curated database of ligand–receptor interactions accounting for multiple subunits expression; 2) quantification of communication scores; 3) the possibility to connect a cell population of interest with 31 reference human cell types; and 4) three visualization modes to facilitate biological interpretation. We apply ICELLNET to three datasets generated through RNA-seq, single-cell RNA-seq, and microarray. ICELLNET reveals autocrine IL-10 control of human dendritic cell communication with up to 12 cell types. Four of them (T cells, keratinocytes, neutrophils, pDC) are further tested and experimentally validated. In summary, ICELLNET is a global, versatile, biologically validated, and easy-to-use framework to dissect cell communication from individual or multiple cell-based transcriptomic profiles. Bulk and single-cell transcriptomic data can be a source of novel insights into how cells interact with each other. Here the authors develop ICELLNET, a global, biologically validated, and easy-to-use framework to dissect cell communication from individual or multiple cell-based transcriptomic profiles.
Collapse
|
9
|
The Utility of Measuring Urinary Metabolites of Mast Cell Mediators in Systemic Mastocytosis and Mast Cell Activation Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2533-2541. [DOI: 10.1016/j.jaip.2020.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/04/2023]
|
10
|
Schneider C, O'Leary CE, Locksley RM. Regulation of immune responses by tuft cells. Nat Rev Immunol 2020; 19:584-593. [PMID: 31114038 DOI: 10.1038/s41577-019-0176-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tuft cells are rare, secretory epithelial cells that generated scant immunological interest until contemporaneous reports in 2016 linked tuft cells with type 2 immunity in the small intestine. Tuft cells have the capacity to produce an unusual spectrum of biological effector molecules, including IL-25, eicosanoids implicated in allergy (such as cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. In most cases, the extracellular signals controlling tuft cell effector function are unknown, but signal transduction is thought to proceed via canonical, G protein-coupled receptor-dependent pathways involving components of the signalling pathway used by type II taste bud cells to sense sweet, bitter and umami compounds. Tuft cells are ideally positioned as chemosensory sentinels that can detect and relay information from diverse luminal substances via what appear to be stereotyped outputs to initiate both positive and aversive responses through populations of immune and neuronal cells. Despite recent insights, numerous questions remain regarding tuft cell lineage, diversity and effector mechanisms and how tuft cells interface with the immunological niche in the tissues where they reside.
Collapse
Affiliation(s)
- Christoph Schneider
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Claire E O'Leary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA. .,Department of Microbiology & Immunology, University of California-San Francisco, San Francisco, CA, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Butterfield JH. Survey of Mast Cell Mediator Levels from Patients Presenting with Symptoms of Mast Cell Activation. Int Arch Allergy Immunol 2019; 181:43-50. [PMID: 31722348 DOI: 10.1159/000503964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Although 4 mast cell mediators can be routinely measured, the results of initial testing to evaluate symptoms of mast cell activation have not been widely reported. OBJECTIVE We examined the results of mast cell mediator tests used to assess patients with mast cell activation symptoms during a 5-year time span. METHODS After excluding patients with alternative diagnoses, records of 108 patients were reviewed for initial mediator test results. Mediators included serum tryptase plus urinary N-methyl histamine (N-MH), leukotriene (LT)E4, and 11β-prostaglandin (PG) F2α or 2,3-dinor-11β-PGF2α (BPG). RESULTS Most commonly, either a single measured elevation of 1 mediator (48.1%) or elevations of 2 (33.3%) mediators was found at baseline, during symptoms or at both time points. Elevated levels of a single mediator in order of frequency were: BPG > tryptase > LTE4 > N-MH, and for two mediators: BPG + tryptase (n = 16 cases) > BPG + LTE4 (n = 9) > BPG + N-MH (n = 6). Elevations in 3 mediators (n = 8) or 4 mediators (n = 2) were much less frequent. Monoclonal mast cell activation syndrome (n = 6), and systemic and cutaneous mastocytosis (n = 4) were also infrequent. Baseline plus symptom-associated tryptase values were obtained in only 7 patients. CONCLUSIONS This survey suggests that elevations of 1 or 2 mediators are the most common (total 81.4% of cases) findings from initial tests for mast cell activation. Elevated levels of BPG were most commonly found both singly and in combination with other mediators, followed by the finding of elevated levels of tryptase. Baseline plus symptom-associated tryptase levels were measured in only a minority of patients.
Collapse
Affiliation(s)
- Joseph H Butterfield
- Division of Allergic Diseases and Program for Mast Cell and Eosinophil Disorders, Mayo Clinic, Rochester, Minnesota, USA,
| |
Collapse
|
13
|
Weiler CR, Austen KF, Akin C, Barkoff MS, Bernstein JA, Bonadonna P, Butterfield JH, Carter M, Fox CC, Maitland A, Pongdee T, Mustafa SS, Ravi A, Tobin MC, Vliagoftis H, Schwartz LB. AAAAI Mast Cell Disorders Committee Work Group Report: Mast cell activation syndrome (MCAS) diagnosis and management. J Allergy Clin Immunol 2019; 144:883-896. [DOI: 10.1016/j.jaci.2019.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
14
|
Therapeutic Potential of Hematopoietic Prostaglandin D 2 Synthase in Allergic Inflammation. Cells 2019; 8:cells8060619. [PMID: 31226822 PMCID: PMC6628301 DOI: 10.3390/cells8060619] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Worldwide, there is a rise in the prevalence of allergic diseases, and novel efficient therapeutic approaches are still needed to alleviate disease burden. Prostaglandin D2 (PGD2) has emerged as a central inflammatory lipid mediator associated with increased migration, activation and survival of leukocytes in various allergy-associated disorders. In the periphery, the hematopoietic PGD synthase (hPGDS) acts downstream of the arachidonic acid/COX pathway catalysing the isomerisation of PGH2 to PGD2, which makes it an interesting target to treat allergic inflammation. Although much effort has been put into developing efficient hPGDS inhibitors, no compound has made it to the market yet, which indicates that more light needs to be shed on potential PGD2 sources and targets to determine which particular condition and patient will benefit most and thereby improve therapeutic efficacy. In this review, we want to revisit current knowledge about hPGDS function, expression in allergy-associated cell types and their contribution to PGD2 levels as well as beneficial effects of hPGDS inhibition in allergic asthma, rhinitis, atopic dermatitis, food allergy, gastrointestinal allergic disorders and anaphylaxis.
Collapse
|
15
|
Maric J, Ravindran A, Mazzurana L, Van Acker A, Rao A, Kokkinou E, Ekoff M, Thomas D, Fauland A, Nilsson G, Wheelock CE, Dahlén SE, Ferreirós N, Geisslinger G, Friberg D, Heinemann A, Konya V, Mjösberg J. Cytokine-induced endogenous production of prostaglandin D 2 is essential for human group 2 innate lymphoid cell activation. J Allergy Clin Immunol 2018; 143:2202-2214.e5. [PMID: 30578872 DOI: 10.1016/j.jaci.2018.10.069] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 08/08/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and maintenance of type 2 immune responses. The prostaglandin (PG) D2-chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) receptor axis potently induces cytokine production and ILC2 migration. OBJECTIVE We set out to examine PG production in human ILC2s and the implications of such endogenous production on ILC2 function. METHODS The effects of the COX-1/2 inhibitor flurbiprofen, the hematopoietic prostaglandin D2 synthase (HPGDS) inhibitor KMN698, and the CRTH2 antagonist CAY10471 on human ILC2s were determined by assessing receptor and transcription factor expression, cytokine production, and gene expression with flow cytometry, ELISA, and quantitative RT-PCR, respectively. Concentrations of lipid mediators were measured by using liquid chromatography-tandem mass spectrometry and ELISA. RESULTS We show that ILC2s constitutively express HPGDS and upregulate COX-2 upon IL-2, IL-25, and IL-33 plus thymic stromal lymphopoietin stimulation. Consequently, PGD2 and its metabolites can be detected in ILC2 supernatants. We reveal that endogenously produced PGD2 is essential in cytokine-induced ILC2 activation because blocking of the COX-1/2 or HPGDS enzymes or the CRTH2 receptor abolishes ILC2 responses. CONCLUSION PGD2 produced by ILC2s is, in a paracrine/autocrine manner, essential in cytokine-induced ILC2 activation. Hence we provide the detailed mechanism behind how CRTH2 antagonists represent promising therapeutic tools for allergic diseases by controlling ILC2 function.
Collapse
Affiliation(s)
- Jovana Maric
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Avinash Ravindran
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Mazzurana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ekoff
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project group Translational Medicine & Pharmacology TMP, Frankfurt, Germany
| | - Danielle Friberg
- Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Science, Uppsala University, Uppsala, Sweden
| | - Akos Heinemann
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria
| | - Viktoria Konya
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
16
|
Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P. The prostaglandin D 2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res 2018; 19:189. [PMID: 30268119 PMCID: PMC6162887 DOI: 10.1186/s12931-018-0893-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Asthma is characterised by chronic airway inflammation, airway obstruction and hyper-responsiveness. The inflammatory cascade in asthma comprises a complex interplay of genetic factors, the airway epithelium, and dysregulation of the immune response.Prostaglandin D2 (PGD2) is a lipid mediator, predominantly released from mast cells, but also by other immune cells such as TH2 cells and dendritic cells, which plays a significant role in the pathophysiology of asthma. PGD2 mainly exerts its biological functions via two G-protein-coupled receptors, the PGD2 receptor 1 (DP1) and 2 (DP2). The DP2 receptor is mainly expressed by the key cells involved in type 2 immune responses, including TH2 cells, type 2 innate lymphoid cells and eosinophils. The DP2 receptor pathway is a novel and important therapeutic target for asthma, because increased PGD2 production induces significant inflammatory cell chemotaxis and degranulation via its interaction with the DP2 receptor. This interaction has serious consequences in the pulmonary milieu, including the release of pro-inflammatory cytokines and harmful cationic proteases, leading to tissue remodelling, mucus production, structural damage, and compromised lung function. This review will discuss the importance of the DP2 receptor pathway and the current understanding of its role in asthma.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonary Service, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, One Health Plaza East Hanover, East Hanover, NJ 07936-1080 USA
| |
Collapse
|
17
|
MacLean Scott E, Solomon LA, Davidson C, Storie J, Palikhe NS, Cameron L. Activation of Th2 cells downregulates CRTh2 through an NFAT1 mediated mechanism. PLoS One 2018; 13:e0199156. [PMID: 29969451 PMCID: PMC6029763 DOI: 10.1371/journal.pone.0199156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/02/2018] [Indexed: 01/07/2023] Open
Abstract
CRTh2 (encoded by PTGDR2) is a G-protein coupled receptor expressed by Th2 cells as well as eosinophils, basophils and innate lymphoid cells (ILC)2s. Activation of CRTh2, by its ligand prostaglandin (PG)D2, mediates production of type 2 cytokines (IL-4, IL-5 and IL-13), chemotaxis and inhibition of apoptosis. As such, the PGD2-CRTh2 pathway is considered important to the development and maintenance of allergic inflammation. Expression of CRTh2 is mediated by the transcription factor GATA3 during Th2 cell differentiation and within ILC2s. Other than this, relatively little is known regarding the cellular and molecular mechanisms regulating expression of CRTh2. Here, we show using primary human Th2 cells that activation (24hrs) through TCR crosslinking (αCD3/αCD28) reduced expression of both mRNA and surface levels of CRTh2 assessed by flow cytometry and qRT-PCR. This effect took more than 4 hours and expression was recovered following removal of activation. EMSA analysis revealed that GATA3 and NFAT1 can bind independently to overlapping sites within a CRTh2 promoter probe. NFAT1 over-expression resulted in loss of GATA3-mediated CRTh2 promoter activity, while inhibition of NFAT using a peptide inhibitor (VIVIT) coincided with recovery of CRTh2 expression. Collectively these data indicate that expression of CRTh2 is regulated through the competitive action of GATA3 and NFAT1. Though prolonged activation led to NFAT1-mediated downregulation, CRTh2 was re-expressed when stimulus was removed suggesting this is a dynamic mechanism and may play a role in PGD2-CRTh2 mediated allergic inflammation.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Base Sequence
- Binding Sites
- Binding, Competitive
- CD28 Antigens/antagonists & inhibitors
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- CD3 Complex/antagonists & inhibitors
- CD3 Complex/genetics
- CD3 Complex/immunology
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/immunology
- Gene Expression Regulation/immunology
- Humans
- Jurkat Cells
- Lymphocyte Activation/drug effects
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- Primary Cell Culture
- Promoter Regions, Genetic
- Prostaglandin D2/metabolism
- Prostaglandin D2/pharmacology
- Protein Binding
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Signal Transduction
- Th2 Cells/cytology
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Emily MacLean Scott
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Lauren A. Solomon
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, CANADA
| | - Courtney Davidson
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Jessica Storie
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Nami Shrestha Palikhe
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Lisa Cameron
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, CANADA
| |
Collapse
|
18
|
Tsukayama I, Toda K, Takeda Y, Mega T, Tanaka M, Kawakami Y, Takahashi Y, Kimoto M, Yamamoto K, Miki Y, Murakami M, Suzuki-Yamamoto T. Preventive effect of Dioscorea japonica on squamous cell carcinoma of mouse skin involving down-regulation of prostaglandin E 2 synthetic pathway. J Clin Biochem Nutr 2018; 62:139-147. [PMID: 29610553 PMCID: PMC5874233 DOI: 10.3164/jcbn.17-54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/08/2017] [Indexed: 01/12/2023] Open
Abstract
Hyperproduced prostaglandin E2 by cyclooxygenase-2 and microsomal prostaglandin E synthase-1 evokes several pathophysiological responses such as inflammation and carcinogenesis. Our recent study demonstrated that Dioscorea japonica extract suppressed the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 and induced apoptosis in lung carcinoma A549 cells. In the present study, we investigated the effects of Dioscorea japonica on squamous cell carcinoma of mouse skin. Dioscorea japonica feeding and Dioscorea japonica extract topical application suppressed the expression of cyclooxygenase-2, microsomal prostaglandin E synthase-1, interleukin-1β and interleukin-6 and inhibited tumor formation, hyperplasia and inflammatory cell infiltration. Immunohistochemical analyses showed the immunoreactivities of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in tumor keratinocytes and stronger immunoreactivities of cyclooxygenase-2 and hematopoietic prostaglandin D synthase in epidermal dendritic cells (Langerhans cells). Treatment with Dioscorea japonica decreased the immunoreactivity of cyclooxygenase-2 and microsomal prostaglandin E synthase-1. These results indicate that Dioscorea japonica may have inhibitory effects on inflammation and carcinogenesis via suppression of the prostaglandin E2 synthetic pathway.
Collapse
Affiliation(s)
- Izumi Tsukayama
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Keisuke Toda
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yasunori Takeda
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Takuto Mega
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Mitsuki Tanaka
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Masumi Kimoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Technology, Industrial and Social Science, Tokushima University, Minami-jyosanjima, Tokushima 770-8513, Japan.,PRIME, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| |
Collapse
|
19
|
Kim JY, Choi GE, Yoo HJ, Kim HS. Interferon Potentiates Toll-Like Receptor-Induced Prostaglandin D 2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species. Front Immunol 2017; 8:1720. [PMID: 29255467 PMCID: PMC5723016 DOI: 10.3389/fimmu.2017.01720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 01/14/2023] Open
Abstract
Prostaglandin D2 (PGD2) is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammatory stimuli. Interferons (IFNs) potentiate macrophage activation and act in concert with exogenous inflammatory mediators such as toll-like receptor (TLR) ligands to amplify inflammatory responses. A recent study found that IFN-γ enhanced lipopolysaccharide-induced PGD2 production, indicating a role of IFNs in PGD2 regulation. Here, we demonstrate that TLR-induced PGD2 production by macrophages was significantly potentiated by signaling common to IFN-β and IFN-γ in a signal transducer and activators of transcription (STAT)1-dependent mechanism. Such potentiation by IFNs was also observed for PGE2 production, despite the differential regulation of PGD synthase and PGE synthase isoforms mediating PGD2 and PGE2 production under inflammatory conditions. Mechanistic analysis revealed that the generation of intracellular reactive oxygen species (ROS) was remarkably potentiated by IFNs and required for PGD2 production, but was nullified by STAT1 deficiency. Conversely, the regulation of STAT1 level and activity by IFNs was largely dependent on ROS levels. Using a model of zymosan-induced peritonitis, the relevance of this finding in vivo was supported by marked inhibition of PGD2 and ROS produced in peritoneal exudate cells by STAT1 deficiency. Collectively, our findings suggest that IFNs, although not activating on their own, are potent amplifiers of TLR-induced PGD2 production via positive-feedback regulation between STAT1 and ROS.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan, South Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Cellular Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Peinhaupt M, Sturm EM, Heinemann A. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:104. [PMID: 28770200 PMCID: PMC5515835 DOI: 10.3389/fmed.2017.00104] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Pilkington SM, Gibbs NK, Costello P, Bennett SP, Massey KA, Friedmann PS, Nicolaou A, Rhodes LE. Effect of oral eicosapentaenoic acid on epidermal Langerhans cell numbers and PGD2production in UVR-exposed human skin: a randomised controlled study. Exp Dermatol 2016; 25:962-968. [DOI: 10.1111/exd.13177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Suzanne M. Pilkington
- Centre for Dermatology; Institute of Inflammation and Repair; University of Manchester; Manchester UK
| | - Neil K. Gibbs
- Centre for Dermatology; Institute of Inflammation and Repair; University of Manchester; Manchester UK
| | - Patrick Costello
- Centre for Dermatology; Institute of Inflammation and Repair; University of Manchester; Manchester UK
| | - Susan P. Bennett
- Centre for Dermatology; Salford Royal Hospital; Manchester Academic Health Science Centre; Manchester UK
| | - Karen A. Massey
- School of Pharmacy; Faculty of Medical and Human Sciences; University of Manchester; Manchester UK
| | | | - Anna Nicolaou
- School of Pharmacy; Faculty of Medical and Human Sciences; University of Manchester; Manchester UK
| | - Lesley E. Rhodes
- Centre for Dermatology; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Centre for Dermatology; Salford Royal Hospital; Manchester Academic Health Science Centre; Manchester UK
| |
Collapse
|
22
|
Divekar R, Butterfield J. Urinary 11β-PGF2α and N-methyl histamine correlate with bone marrow biopsy findings in mast cell disorders. Allergy 2015; 70:1230-8. [PMID: 26095439 DOI: 10.1111/all.12668] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND The utility of measuring histamine and prostaglandin metabolites in the urine of patients with mastocytosis has not been critically examined in a large series of patients. This study examined the relationship between the extent of increase in urinary excretion of 11β-prostaglandinF2α and N-methyl histamine, with serum tryptase, whole blood serotonin, and bone marrow findings including morphology, percentage involvement, and abnormal mast cell phenotype. METHODS This was a retrospective analysis of 90 patients who were continuously enrolled in the study for a period of 6 years (2008-2014). We recorded serum tryptase, whole blood serotonin, levels of urinary mast cell metabolites 11β-prostaglandinF2α and N-methyl histamine (NMH), and bone marrow findings. RESULTS Urinary mast cell metabolites 11β-prostaglandinF2α and N-methyl histamine correlated with levels of serum tryptase, mast cell burden in the bone marrow, the presence of mast cell aggregates, and atypical mast cells on bone marrow biopsy. Whole blood serotonin did not have a significant correlation with the serum tryptase or mast cell burden in the bone marrow. Urinary NMH was significantly different between c-kit D816V-positive and c-kit D816V-negative patients, while 11β-prostaglandinF2α was not. Urinary 11β-prostaglandinF2α 24-h excretion >3500 ng and NMH levels >400 μg/gm Cr corresponded with the high degree of bone marrow biopsies positive for atypical mast cells, the presence of aggregates, and c-kit mutation. CONCLUSIONS Easily obtained and quantified urinary metabolites of histamine (greater than twice the upper limit of normal) and prostaglandin D2 (>3.4 times the upper limit of normal) correlate well with bone marrow findings of mastocytosis.
Collapse
Affiliation(s)
- R. Divekar
- Division of Allergic Diseases and the Mayo Clinic Program for Mast Cell and Eosinophil Disorders; Mayo Clinic; Rochester MN USA
| | - J. Butterfield
- Division of Allergic Diseases and the Mayo Clinic Program for Mast Cell and Eosinophil Disorders; Mayo Clinic; Rochester MN USA
| |
Collapse
|
23
|
CCL22 to Activate Treg Migration and Suppress Depigmentation in Vitiligo. J Invest Dermatol 2015; 135:1574-1580. [PMID: 25634358 PMCID: PMC5044299 DOI: 10.1038/jid.2015.26] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/16/2022]
Abstract
In vitiligo, gradual cutaneous depigmentation and cytotoxic T cell activity against melanocytes is accompanied by a paucity of regulatory T cells (Tregs) in vitiligo patient skin, indicating that autoimmune responses are not adequately held in check. Thus we sought a means to repopulate patient skin with Tregs. We hypothesized that enhanced expression of CCL22 can promote Treg skin homing to suppress depigmentation. The mouse Ccl22 gene was cloned into an expression vector and resulting DNA was used for gene gun treatment. Two spontaneous depigmentation models with different kinetics of melanocyte loss were utilized, expressing tyrosinase-reactive and gp100-reactive T cell receptor transgenes. Mice were subjected to 5 gene gun treatments 6 days apart, scanned for depigmentation weekly thereafter and monitored for activation and proliferation of relevant T cells and for Treg infiltration to the skin. Significantly reduced depigmentation 2 weeks after treatment was accompanied by a markedly increased abundance of Tregs in the skin at the expense of melanocyte reactive, TCR transgenic T cells as well as by reduced proliferation and reduced IFN-γ production in response to cognate peptide. Continued treatment may be necessary for sustained, local immunosuppression. These findings suggest that topical CCL22 may be used for the treatment of vitiligo.
Collapse
|
24
|
Mast Cell Activation Syndrome: Improved Identification by Combined Determinations of Serum Tryptase and 24-Hour Urine 11β-Prostaglandin2α. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2014; 2:775-8. [DOI: 10.1016/j.jaip.2014.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 05/09/2014] [Accepted: 06/17/2014] [Indexed: 11/24/2022]
|
25
|
Krishna R, Guo Y, Schulz V, Cord-Cruz E, Smith S, Hair S, Nahm WK, Draelos ZD. Non-obligatory role of prostaglandin D2 receptor subtype 1 in rosacea: laropiprant in comparison to a placebo did not alleviate the symptoms of erythematoelangiectaic rosacea. J Clin Pharmacol 2014; 55:137-43. [PMID: 25142778 DOI: 10.1002/jcph.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022]
Abstract
Erythematotelangiectatic rosacea shares facial flushing features with those seen after niacin. This study was performed to test the hypothesis whether prostaglandin D2 (PGD2) receptor subtype 1 antagonist (laropiprant) will improve the symptoms of rosacea. The purpose of this study was to evaluate the effect of laropiprant 100 mg administered once daily for 4 weeks on the signs and symptoms of erythematotelangiectatic rosacea. Subjects received laropiprant 100 mg once-daily (n = 30) or placebo (n = 30) for 4 weeks. The primary pharmacodynamics endpoint was change in Clinician's Erythema Assessment (CEA) score from baseline to week 4. The patient self-assessment (PSA) was a secondary endpoint. Laropiprant was generally well tolerated in this study for the primary endpoint of change in CEA score from Baseline to Week 4, the least-squares mean of change from baseline to visit 4/week 4 was -3.7 and -3.4 for placebo and laropiprant (100 mg), respectively. The least-squares mean difference (placebo minus laropiprant) with 90% confidence interval of change in CEA score from baseline to visit 4/week 4 was estimated as -0.3 (-1.6, 1.0). For the secondary endpoint, the least-squares mean difference (placebo minus laropiprant) with 90% confidence interval of change from baseline to visit 4/week 4 was estimated as -0.7 (-7.7, 6.4) for PSA total score, -4.5 (-14.2, 5.3) for PSA emotion score, -1.3 (-7.8, 5.3) for PSA symptoms score, and 3.6 (-4.3, 11.4) for PSA functioning score. Laropiprant administered once daily for 4 weeks was generally well tolerated in this population of subjects with rosacea. However, there were no clinically meaningful changes in the primary endpoint of CEA given that the response to laropiprant could not be differentiated from that to placebo. There was also no clinically meaningful change in the secondary endpoint, PSA. A DP1 antagonist is not likely to be effective in rosacea.
Collapse
Affiliation(s)
- Rajesh Krishna
- Merck, Sharp and Dohme Corporation, a subsidiary of Merck & Co., Inc., Whitehouse Station, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Felden L, Walter C, Angioni C, Schreiber Y, von Hentig N, Ferreiros N, Geisslinger G, Lötsch J. Similar maximum systemic but not local cyclooxygenase-2 inhibition by 50 mg lumiracoxib and 90 mg etoricoxib: a randomized controlled trial in healthy subjects. Pharm Res 2014; 31:1813-22. [PMID: 24469906 DOI: 10.1007/s11095-013-1285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/31/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE Once daily doses of 100-400 mg lumiracoxib have been proposed to inhibit local prostaglandin synthesis longer than systemic prostaglandin synthesis due to local accumulation in inflamed, acidic tissue. Lower, less toxic doses, however, might still achieve the clinical goal and merit further contemplation. METHODS In a randomized, double-blind, placebo-controlled, three-way cross-over study, 18 healthy men received, with an interval of 24 h, two oral doses of 50 mg lumiracoxib or for comparison, 90 mg etoricoxib, for which local tissue accumulation has not been claimed as therapeutic component. Systemic and local drug concentrations, assessed by means of subcutaneous in-vivo microdialysis, were related to COX-2 inhibiting effects, quantified as inhibition of prostaglandin ex-vivo production in whole blood as well as local tissue prostaglandin (PG) concentrations. RESULTS Twenty-four hours after the first dose, only etoricoxib was detectable in plasma and inhibited PGE2 production. In contrast, after the second dose, systemic PGE2 concentrations were significantly reduced by both coxibs, indicating similar maximum systemic effects of the selected doses. The local COX-2 inhibition by etoricoxib was most pronounced for PGD2. To the contrary, no indication was given of local inhibition of PG production by lumiracoxib at the dose tested. CONCLUSIONS Doses of 50 mg lumiracoxib and 90 mg etoricoxib produced similar maximum inhibition of systemic COX-2 function whereas 50 mg lumiracoxib was ineffective in producing local COX-2 inhibition. At a 50 mg dosage, lumiracoxib does not provide peripheral effects that outlast its systemic actions in therapies of rheumatic diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Lisa Felden
- Institute of Clinical Pharmacology, Goethe University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Drummond PD, Minosora K, Little G, Keay W. Topical ibuprofen inhibits blushing during embarrassment and facial flushing during aerobic exercise in people with a fear of blushing. Eur Neuropsychopharmacol 2013; 23:1747-53. [PMID: 23958575 DOI: 10.1016/j.euroneuro.2013.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Abstract
The flush that develops during whole-body heat stress depends partly on prostaglandins production in the skin. Variations in the strength of this local mechanism may contribute to individual differences in susceptibility to blushing and associated anxiety. To investigate this in the present study, the anti-inflammatory agent ibuprofen (which blocks prostaglandins formation) was applied topically to a small area of the cheek in 16 participants with a fear of blushing and in another 14 without this fear. Changes in skin blood flow were monitored at the ibuprofen-treated site and at a mirror image control site while participants sang (to induce embarrassment and blushing) and during aerobic exercise (to induce flushing). The topical ibuprofen treatment inhibited increases in cheek blood flow in both groups during both of these tasks. However, increases in cheek blood flow were greater in participants with high than low fear of blushing immediately after exercise. These findings suggest that prostaglandins contribute to dilatation of facial blood vessels both during emotional arousal (embarrassment) and aerobic exercise. Furthermore, fear of blushing may be associated with mechanisms that delay the resumption of normal vascular tone after a period of vasodilatation. Whether topical ibuprofen gel is suitable for intermittent or long-term use as an aid for blushing control requires further investigation.
Collapse
Affiliation(s)
- Peter D Drummond
- School of Psychology and Exercise Science, Murdoch University, Perth, 6150 Western Australia, Australia.
| | | | | | | |
Collapse
|
28
|
Kataoka N, Satoh T, Hirai A, Saeki K, Yokozeki H. Indomethacin inhibits eosinophil migration to prostaglandin D2 : therapeutic potential of CRTH2 desensitization for eosinophilic pustular folliculitis. Immunology 2013; 140:78-86. [PMID: 23582181 DOI: 10.1111/imm.12112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022] Open
Abstract
Indomethacin is a cyclo-oxygenase inhibitor, and shows therapeutic potential for various eosinophilic skin diseases, particularly eosinophilic pustular folliculitis. One of the unique characteristics of indomethacin is that, unlike other non-steroidal anti-inflammatory drugs, it is a potent agonist of chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2 ). This study investigated the pharmacological actions of indomethacin on eosinophil migration to clarify the actual mechanisms underlying the therapeutic effects of indomethacin on eosinophilic pustular folliculitis. Eosinophils exhibited chemokinetic and chemotactic responses to both PGD2 and indomethacin through CRTH2 receptors. Pre-treatment of eosinophils with indomethacin greatly inhibited eosinophil migration to PGD2 and, to a much lesser extent, to eotaxin (CCL11); these effects could be mediated by homologous and heterologous desensitization of eosinophil CRTH2 and CCR3, respectively, by agonistic effects of indomethacin on CRTH2. Indomethacin also cancelled a priming effect of Δ(12) -PGJ2 , a plasma metabolite of PGD2 , on eosinophil chemotaxis to eotaxin. Indomethacin down-modulated cell surface expression of both CRTH2 and CCR3. Hair follicle epithelium and epidermal keratinocytes around eosinophilic pustules together with the eccrine apparatus of palmoplantar lesions of eosinophilic pustular folliculitis were immunohistochemically positive for lipocalin-type PGD synthase. Indomethacin may exert therapeutic effects against eosinophilic skin diseases in which PGD2 -CRTH2 signals play major roles by reducing eosinophil responses to PGD2 .
Collapse
Affiliation(s)
- Naoko Kataoka
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
29
|
He SH, Zhang HY, Zeng XN, Chen D, Yang PC. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis. Acta Pharmacol Sin 2013; 34:1270-83. [PMID: 23974516 DOI: 10.1038/aps.2013.88] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
The current definition of allergy is a group of IgE-mediated diseases. However, a large portion of patients with clinical manifestations of allergies do not exhibit elevated serum levels of IgE (sIgEs). In this article, three key factors, ie soluble allergens, sIgEs and mast cells or basophils, representing the causative factors, messengers and primary effector cells in allergic inflammation, respectively, were discussed. Based on current knowledge on allergic diseases, we propose that allergic diseases are a group of diseases mediated through activated mast cells and/or basophils in sensitive individuals, and allergic diseases include four subgroups: (1) IgE dependent; (2) other immunoglobulin dependent; (3) non-immunoglobulin mediated; (4) mixture of the first three subgroups. According to our proposed definition, pseudo-allergic-reactions, in which mast cell or basophil activation is not mediated via IgE, or to a lesser extent via IgG or IgM, should be non-IgE-mediated allergic diseases. Specific allergen challenge tests (SACTs) are gold standard tests for diagnosing allergies in vivo, but risky. The identification of surface membrane activation markers of mast cells and basophils (CD203c, CCR3, CD63, etc) has led to development of the basophil activation test (BAT), an in vitro specific allergen challenge test (SACT). Based on currently available laboratory allergy tests, we here propose a laboratory examination procedure for allergy.
Collapse
|
30
|
The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683405. [PMID: 24024207 PMCID: PMC3762073 DOI: 10.1155/2013/683405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/21/2013] [Indexed: 12/20/2022]
Abstract
Prostanoids, including prostaglandins (PGs), thromboxanes (TXs), and prostacyclins, are synthesized from arachidonic acid (AA) by the action of Cyclooxygenase (COX) enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC)-natural killer (NK) reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.
Collapse
|
31
|
Prostaglandin D(2) in inflammatory arthritis and its relation with synovial fluid dendritic cells. Mediators Inflamm 2013; 2013:329494. [PMID: 23737645 PMCID: PMC3662174 DOI: 10.1155/2013/329494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/18/2013] [Accepted: 04/10/2013] [Indexed: 11/17/2022] Open
Abstract
Prostaglandin (PG)D2 has been shown to be an active agent in the resolution of experimentally induced inflammation. This study was undertaken to determine the presence of PGD2 in chronic joint effusions and to explore the potential contributions of dendritic cells (DC) and monocytes to the intra-articular synthesis of PGD2. Synovial fluid (SF) was obtained from patients with inflammatory arthritis and knee effusions. PGD2 and PGE2 were detected in SF by ultrahigh-performance tandem mass spectrometry. Cellular fractions in SF were separated by density-gradient centrifugation and flow cytometry. The expression of hematopoietic prostaglandin D-synthase (hPGDS) and PGE-synthase (PGES) mRNA was determined by RT-PCR. Both PGD2 and PGE2 were detected in blood and SF, with PGD2 being more abundant than PGE2 in SF. mRNA for hPGDS was more abundant in SF mDCs than SF monocytes (P < 0.01) or PB monocytes (P < 0.001). SF mDC expressed significantly more hPGDS than PGES. Expressions of PGD2 and hPGDS were inversely associated with serum C-reactive protein (P < 0.01) and erythrocyte sedimentation rate (P < 0.01). The findings suggest that synovial DCs may be an important source of hPGDS and that systemic disease activity may be influenced by actions of PGD2 in RA and other arthropathies.
Collapse
|
32
|
Yang Y, Tang LQ, Wei W. Prostanoids receptors signaling in different diseases/cancers progression. J Recept Signal Transduct Res 2013; 33:14-27. [DOI: 10.3109/10799893.2012.752003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Nicolaou A. Eicosanoids in skin inflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:131-8. [PMID: 22521864 DOI: 10.1016/j.plefa.2012.03.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/27/2022]
Abstract
Eicosanoids play an integral part in homeostatic mechanisms related to skin health and structural integrity. They also mediate inflammatory events developed in response to environmental factors, such as exposure to ultraviolet radiation, and inflammatory and allergic disorders, including psoriasis and atopic dermatitis. This review article discusses biochemical aspects related to cutaneous eicosanoid metabolism, the contribution of these potent autacoids to skin inflammation and related conditions, and considers the importance of nutritional supplementation with bioactives such as omega-3 and omega-6 polyunsaturated fatty acids and plant-derived antioxidants as means of addressing skin health issues.
Collapse
Affiliation(s)
- Anna Nicolaou
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK.
| |
Collapse
|
34
|
Morimoto K, Tsuchiya S, Sugimoto Y. [Functions of prostaglandin receptors in contact dermatitis and application to drug discovery]. YAKUGAKU ZASSHI 2012; 132:1217-23. [PMID: 23123710 DOI: 10.1248/yakushi.12-00232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contact dermatitis is an inflammatory skin disease caused by toxic factors that activate the skin innate immunity (irritant contact dermatitis) or by a T cell-mediated hypersensitivity reaction (allergic contact dermatitis). These inflammatory skin diseases are sometimes still not easy to control. Therefore, the development of new effective drugs with fewer side effects is anticipated. In the skin under pathophysiological conditions, multiple prostaglandins are produced and their receptors are expressed in time- and/or cell-dependent manners. However, the precise role of prostaglandins and their receptors in contact dermatitis has not been fully understood. Recently, studies using mice with a disruption of each prostaglandin receptor gene, as well as receptor-selective compounds revealed that prostaglandin receptors have manifold functions, sometimes resulting in opposite outcomes. Here, we review new advances in the roles of prostaglandin receptors in contact hypersensitivity as a cutaneous immune response model, and also discuss the clinical potentials of receptor-selective drugs.
Collapse
Affiliation(s)
- Kazushi Morimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
35
|
Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 2012; 52:141-64. [PMID: 23124022 DOI: 10.1016/j.plipres.2012.10.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
Abstract
The skin is the primary barrier from the outside environment, protecting the host from injury, infectious pathogens, water loss and solar ultraviolet radiation. In this role, it is supported by a highly organized system comprising elements of innate and adaptive immunity, responsive to inflammatory stimuli. The cutaneous immune system is regulated by mediators such as cytokines and bioactive lipids that can initiate rapid immune responses with controlled inflammation, followed by efficient resolution. However, when immune responses are inadequate or mounted against non-infectious agents, these mediators contribute to skin pathologies involving unresolved or chronic inflammation. Skin is characterized by active lipid metabolism and fatty acids play crucial roles both in terms of structural integrity and functionality, in particular when transformed to bioactive mediators. Eicosanoids, endocannabinoids and sphingolipids are such key bioactive lipids, intimately involved in skin biology, inflammation and immunity. We discuss their origins, role and influence over various cells of the epidermis, dermis and cutaneous immune system and examine their function in examples of inflammatory skin conditions. We focus on psoriasis, atopic and contact dermatitis, acne vulgaris, wound healing and photodermatology that demonstrate dysregulation of bioactive lipid metabolism and examine ways of using this insight to inform novel therapeutics.
Collapse
Affiliation(s)
- Alexandra C Kendall
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | | |
Collapse
|
36
|
Hematopoietic prostaglandin D synthase inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2012; 51:97-133. [PMID: 22520473 DOI: 10.1016/b978-0-12-396493-9.00004-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Baudouin-Legros M, Colas J, Moriceau S, Kelly M, Planelles G, Edelman A, Ollero M. Long-term CFTR inhibition modulates 15d-prostaglandin J2 in human pulmonary cells. Int J Biochem Cell Biol 2012; 44:1009-18. [DOI: 10.1016/j.biocel.2012.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
38
|
Nakahigashi K, Doi H, Otsuka A, Hirabayashi T, Murakami M, Urade Y, Tanizaki H, Egawa G, Miyachi Y, Kabashima K. PGD2 induces eotaxin-3 via PPARγ from sebocytes: A possible pathogenesis of eosinophilic pustular folliculitis. J Allergy Clin Immunol 2012; 129:536-43. [DOI: 10.1016/j.jaci.2011.11.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/21/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022]
|
39
|
Maccauro G, Tripodi D, Saggini A, Conti F, Cianchetti E, Angelucci D, Rosati M, Toniato E, Fulcheri M, Tetè S, Salini V, Caraffa A, Antinolfi P, Frydas S, Conti P, Theoharides T. Calcium Ionophore A23187 and Compound 48/80 Induce PGD2 and Tryptase in Human Cord Blood-Derived Mast Cells: Lack of Effect of IL-18. EUR J INFLAMM 2012; 10:33-43. [DOI: 10.1177/1721727x1201000104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Immunological and biochemical reactions associated with inflammation are elicited in response to a physical or immunological challenge. Early in inflammation there is mobilization and infiltration of neutrophils, mast cells and macrophages to the site of inflammation. These cells release pro-inflammatory compounds icluding cytokines, vasoactive peptides (eg., histamine), and eicosanoids. The release of prostaglandin D2 (PGD2) and tryptase induced by anti-IgE, A23187 and compound 48/80 were studied using in vitro a good and valid model of human cord blood-derived mast cells (HCBDMC). Tryptase is a mast cell product and enhances vasopermeability with anticoagulant activities. In this study we measure the release of PGD2 and tryptase on mast cells activate by anti-IgE, calcium ionophore A23187, polybasic compound 48/80 (an agent containing a cationic region adjacent to a hydrophobic moiety, which works by activating G proteins) and IL-18. The generation of PGD2 was measured by radioimmunoassay. Release of PGD2 was detectable (after 12 h) following challenge with anti-IgE, A23187 and compound 48/80. Our data show that mature HCBDMC produce proinflammatory PGD2 following triggering with anti-IgE and with IgE-independent agonists, such as calcium ionophore A23187 and polybasic compound 48/80, while IL-18 was unable to stimulate the release of PGD2 or tryptase on HCBDMC. Although a great deal has been learned about the mediators produced by mast cells, the ultimate biologic function(s) of mast cells remains a mystery.
Collapse
Affiliation(s)
- G. Maccauro
- Orthopedics Division, Università Cattolica, Rome, Italy
| | - D. Tripodi
- Dental School, University of Chieti-Pescara, Italy
| | - A. Saggini
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - F. Conti
- Gynecology Division, Pescara Hospital, Pescara, Italy
| | - E. Cianchetti
- Ortona Hospital, University of Chieti-Pescara, Italy
| | - D. Angelucci
- Pathological Anatomy, Chieti Hospital, Chieti, Italy
| | - M. Rosati
- Gynecology Division, Pescara Hospital, Pescara, Italy
| | - E. Toniato
- Immunology Division, University of Chieti-Pescara, Italy
| | | | - S. Tetè
- Dental School, University of Chieti-Pescara, Italy
| | - V. Salini
- Orthopedics Division, University of Chieti-Pescara, Italy
| | - A. Caraffa
- Orthopedics Division, University of Perugia, Perugia, Italy
| | - P. Antinolfi
- Orthopedics Division, University of Perugia, Perugia, Italy
| | - S. Frydas
- Laboratory of Parasitology, Veterinary Faculty, Aristotelian University, Thessaloniki, Greece
| | - P. Conti
- Immunology Division, University of Chieti-Pescara, Italy
| | - T.C. Theoharides
- Department of Physiology and Pharmacology, Tufts University School of Medicine, New England Medical Center, Boston, MA, USA
| |
Collapse
|
40
|
Mantel A, Carpenter-Mendini AB, Vanbuskirk JB, De Benedetto A, Beck LA, Pentland AP. Aldo-keto reductase 1C3 is expressed in differentiated human epidermis, affects keratinocyte differentiation, and is upregulated in atopic dermatitis. J Invest Dermatol 2011; 132:1103-10. [PMID: 22170488 PMCID: PMC3305848 DOI: 10.1038/jid.2011.412] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) has been shown to mediate the metabolism of sex hormones and prostaglandin D(2) (PGD(2)), a lipid mediator that promotes skin inflammation in atopic dermatitis (AD). As both have a role in skin function and pathology, we first sought to investigate the expression pattern of AKR1C3 in normal human epidermis. Immunofluorescence revealed a strong expression of AKR1C3 in the differentiated suprabasal layers compared with the basal layer. Western blot analysis and quantitative PCR confirmed that AKR1C3 expression was also upregulated in differentiation-induced primary human keratinocytes (PHKs). To investigate the functional role of AKR1C3 during PHK differentiation, its expression and activity (measured as PGD(2) reduction to 9α,11β-PGF(2) by ELISA) were impaired by small interfering RNA or 2'-hydroxyflavanone, respectively. Cytokeratin 10 (K10) and loricrin expression were then examined by western blot analysis, thus revealing altered expression of these differentiation markers. Finally, following an observation that the AD-associated mediator, PGD(2), upregulated AKR1C3 expression in PHKs, we used immunofluorescence to examine AKR1C3 expression in AD and psoriasis lesions. AKR1C3 was found to be upregulated in AD but not in psoriasis lesions compared with non-lesional skin. Our work demonstrates a function for AKR1C3 in differentiation-associated gene regulation and also suggests a role in supporting inflammation in AD.
Collapse
Affiliation(s)
- Alon Mantel
- Department of Dermatology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
41
|
Luna-Gomes T, Magalhães KG, Mesquita-Santos FP, Bakker-Abreu I, Samico RF, Molinaro R, Calheiros AS, Diaz BL, Bozza PT, Weller PF, Bandeira-Melo C. Eosinophils as a novel cell source of prostaglandin D2: autocrine role in allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:6518-26. [PMID: 22102725 DOI: 10.4049/jimmunol.1101806] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGD(2) is a key mediator of allergic inflammatory diseases that is mainly synthesized by mast cells, which constitutively express high levels of the terminal enzyme involved in PGD(2) synthesis, the hematopoietic PGD synthase (H-PGDS). In this study, we investigated whether eosinophils are also able to synthesize, and therefore, supply biologically active PGD(2). PGD(2) synthesis was evaluated within human blood eosinophils, in vitro differentiated mouse eosinophils, and eosinophils infiltrating inflammatory site of mouse allergic reaction. Biological function of eosinophil-derived PGD(2) was studied by employing inhibitors of synthesis and activity. Constitutive expression of H-PGDS was found within nonstimulated human circulating eosinophils. Acute stimulation of human eosinophils with A23187 (0.1-5 μM) evoked PGD(2) synthesis, which was located at the nuclear envelope and was inhibited by pretreatment with HQL-79 (10 μM), a specific H-PGDS inhibitor. Prestimulation of human eosinophils with arachidonic acid (10 μM) or human eotaxin (6 nM) also enhanced HQL-79-sensitive PGD(2) synthesis, which, by acting on membrane-expressed specific receptors (D prostanoid receptors 1 and 2), displayed an autocrine/paracrine ability to trigger leukotriene C(4) synthesis and lipid body biogenesis, hallmark events of eosinophil activation. In vitro differentiated mouse eosinophils also synthesized paracrine/autocrine active PGD(2) in response to arachidonic acid stimulation. In vivo, at late time point of the allergic reaction, infiltrating eosinophils found at the inflammatory site appeared as an auxiliary PGD(2)-synthesizing cell population. Our findings reveal that eosinophils are indeed able to synthesize and secrete PGD(2), hence representing during allergic inflammation an extra cell source of PGD(2), which functions as an autocrine signal for eosinophil activation.
Collapse
Affiliation(s)
- Tatiana Luna-Gomes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yazaki M, Kashiwagi K, Aritake K, Urade Y, Fujimori K. Rapid degradation of cyclooxygenase-1 and hematopoietic prostaglandin D synthase through ubiquitin-proteasome system in response to intracellular calcium level. Mol Biol Cell 2011; 23:12-21. [PMID: 22049022 PMCID: PMC3248891 DOI: 10.1091/mbc.e11-07-0623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cyclooxygenase (COX)-1 and hematopoietic prostaglandin (PG) D synthase (H-PGDS) proteins, which are both involved in the arachidonate cascade, were stable in human megakaryocytic MEG-01 cells. In contrast, once the intracellular calcium level was increased by treatment with a calcium ionophore, both protein levels rapidly decreased with a half-life of less than 30 and 120 min for COX-1 and H-PGDS, respectively. In the presence of a proteasome inhibitor, COX-1 and H-PGDS proteins accumulated within 10 and 30 min, respectively, and concurrently appeared as the high-molecular-mass ubiquitinated proteins within 30 and 60 min, respectively, after an increase in the intracellular calcium level. The ubiquitination of these proteins was also observed when ADP, instead of a calcium ionophore, was used as an inducer to elevate the intracellular calcium level. When the entry of calcium ion into the cells was inhibited by ethylene glycol tetraacetic acid (EGTA), the ubiquitination of COX-1 and H-PGDS was clearly suppressed; and the addition of CaCl(2) to the medium cleared the EGTA-mediated suppression of the ubiquitination. These results indicate that COX-1 and H-PGDS were rapidly ubiquitinated and degraded through the ubiquitin-proteasome system in response to the elevation of the intracellular calcium level.
Collapse
Affiliation(s)
- Misato Yazaki
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | | | | | | | | |
Collapse
|
43
|
Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: pharmacological, genetic, and clinical evidence. Cancer Metastasis Rev 2011; 30:343-61. [DOI: 10.1007/s10555-011-9306-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
45
|
Matsushima Y, Satoh T, Yamamoto Y, Nakamura M, Yokozeki H. Distinct roles of prostaglandin D2 receptors in chronic skin inflammation. Mol Immunol 2011; 49:304-10. [DOI: 10.1016/j.molimm.2011.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
46
|
Nicolaou A, Pilkington SM, Rhodes LE. Ultraviolet-radiation induced skin inflammation: dissecting the role of bioactive lipids. Chem Phys Lipids 2011; 164:535-43. [PMID: 21524643 DOI: 10.1016/j.chemphyslip.2011.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/08/2011] [Accepted: 04/10/2011] [Indexed: 11/16/2022]
Abstract
Acute exposure of human skin to the ultraviolet radiation (UVR) in sunlight results in the sunburn response. This is mediated in part by pro-inflammatory eicosanoids and other bioactive lipids, which are in turn produced via mechanisms including UVR-induction of oxidative stress, cell signalling and gene expression. Sunburn is a self-limiting inflammation offering a convenient and accessible system for the study of human cutaneous lipid metabolism. Recent lipidomic applications have revealed that a wider diversity of eicosanoids may be involved in the sunburn response than previously appreciated. This article reviews the effects of UVR on cutaneous lipids and examines the contribution of bioactive lipid mediators in the development of sunburn. Since human skin is an active site of polyunsaturated fatty acid (PUFA) metabolism, and these macronutrients can influence the production of eicosanoids/bioactive lipids, as well as modulate cell signalling, gene expression and oxidative stress, the application of PUFA as potential photoprotective agents is also considered.
Collapse
Affiliation(s)
- Anna Nicolaou
- School of Pharmacy and Centre for Skin Sciences, University of Bradford, Bradford, UK.
| | | | | |
Collapse
|
47
|
Ugajin T, Satoh T, Kanamori T, Aritake K, Urade Y, Yokozeki H. FcεRI, but not FcγR, signals induce prostaglandin D2 and E2 production from basophils. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:775-82. [PMID: 21712025 DOI: 10.1016/j.ajpath.2011.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/21/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Prostaglandin (PG) D2 and PGE2 are arachidonic acid metabolites that are generated though an isomerization reaction catalyzed by PG synthases. PGs have been implicated in immunologic reactions in addition to a wide range of physiological functions. It has long been thought that basophils, in contrast to mast cells, do not synthesize PGs, although they do release leukotrienes and platelet-activating factor. Here, we show that basophils function as a source of PGD2 and PGE2. In vitro-cultured basophils from mouse bone marrow produced both PGD2 and PGE2 in response to IgE + antigen (Ag), but not to IgG + Ag. Release of PGs was almost completely abrogated in cultured basophils from FcRγ-chain(-/-) mice, indicating the involvement of FcεRI. Basophils freshly isolated from bone marrow cells (primary basophils) were also capable of secreting PGD2 and PGE2. Although the amount of PGD2 released from primary basophils was lower than that from mast cells, the capability of primary basophils to generate PGE2 was more potent than that of mast cells. Transcripts and proteins for both hematopoietic-type PGD synthase and PGE synthase were detected in basophils. In addition, human basophils, like mouse basophils, also produced PGD2 through IgE-mediated stimulation. Thus, basophils could be an important source of PGD2/PGE2 and may contribute to allergic inflammation and immune responses.
Collapse
Affiliation(s)
- Tsukasa Ugajin
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Yamamoto Y, Otani S, Hirai H, Nagata K, Aritake K, Urade Y, Narumiya S, Yokozeki H, Nakamura M, Satoh T. Dual functions of prostaglandin D2 in murine contact hypersensitivity via DP and CRTH2. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:302-14. [PMID: 21703412 DOI: 10.1016/j.ajpath.2011.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/26/2011] [Accepted: 03/31/2011] [Indexed: 11/17/2022]
Abstract
Prostaglandin D2 (PGD2) exerts its effects through two distinct receptors: the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and the D prostanoid (DP) receptor. Our previous study demonstrated that CRTH2 mediates contact hypersensitivity (CHS) in mice. However, the function of DP receptor remains to be fully established. In this study, we examine the pathophysiological roles of PGD2 using DP-deficient (DP(-/-)) and CRTH2/DP-deficient (CRTH2(-/-)/DP(-/-)) mice to elucidate receptor-mediated PGD2 action in CHS. We observed profound exacerbation of CHS in DP(-/-) mice. CRTH2(-/-)/DP(-/-) mice showed similar exacerbation, but to a lesser extent. These symptoms were accompanied by increased production of interferon-γ and IL-17. The increase in IL-17 producing γδ T cells was marked and presumably contributed to the enhanced CHS. DP deficiency promoted the in vivo migration of dendritic cells to regional lymph nodes. A DP agonist added to DCs in vitro was able to inhibit production of IL-12 and IL-1β. Interestingly, production of IL-10 in dendritic cells was elevated via the DP pathway, but it was lowered by the CRTH2 pathway. Collectively, PGD2 signals through CRTH2 to mediate CHS inflammation, and conversely, DP signals to exert inhibitory effects on CHS. Thus, we report opposing functions for PGD2 that depend on receptor usage in allergic reactions.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Movement
- Chemokines
- Cytokines
- Dermatitis, Contact/drug therapy
- Dermatitis, Contact/metabolism
- Dermatitis, Contact/pathology
- Female
- Flow Cytometry
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/genetics
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-12/genetics
- Interleukin-12/metabolism
- Interleukin-17/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Prostaglandin D2/therapeutic use
- RNA, Messenger/genetics
- Receptors, Immunologic/physiology
- Receptors, Prostaglandin/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Regulatory
Collapse
Affiliation(s)
- Yoshihiro Yamamoto
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
Prostaglandin D₂ (PGD₂) is a major prostanoid, produced mainly by mast cells, in allergic diseases, including bronchial asthma. PGD₂-induced vasodilatation and increased permeability are well-known classical effects that may be involved in allergic inflammation. Recently, novel functions of PGD₂ have been identified. To date, D prostanoid receptor (DP) and chemoattractant receptor homologous molecule expressed on T(H)2 cells (CRTH2) have been shown to be major PGD₂-related receptors. These two receptors have pivotal roles mediating allergic diseases by regulating the functions of various cell types, such as T(H)2 cells, eosinophils, basophils, mast cells, dendritic cells, and epithelial cells. This review will focus on the current understanding of the roles of PGD₂ and its metabolites in T(H)2 inflammation and the pathogenesis of bronchial asthma.
Collapse
Affiliation(s)
- Masafumi Arima
- Department of Developmental Genetics (H2), Chiba University Graduate School of Medicine, Chiba, Japan.
| | | |
Collapse
|