1
|
Mousaei Ghasroldasht M, Liakath Ali F, Park HS, Hadizadeh M, Weng SHS, Huff A, Vafaei S, Al-Hendy A. A Comparative Analysis of Naïve Exosomes and Enhanced Exosomes with a Focus on the Treatment Potential in Ovarian Disorders. J Pers Med 2024; 14:482. [PMID: 38793064 PMCID: PMC11122298 DOI: 10.3390/jpm14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Exosome-based therapy has emerged as a promising strategy for addressing diverse disorders, indicating the need for further exploration of the potential therapeutic effects of the exosome cargos. This study introduces "enhanced exosomes", a novel type of exosomes developed through a novel cell culture system. These specific exosomes may become potent therapeutic agents for treating ovarian disorders. In this study, we conducted a comparative analysis of the protein and miRNA cargo compositions of enhanced exosomes and naïve exosomes. Our findings revealed distinct cargo compositions in enhanced exosomes, featuring upregulated proteins such as EFEMP1, HtrA1, PAM, and SDF4, suggesting their potential for treating ovarian disorders. MicroRNA profiling revealed that miR-1-3p, miR-103a-3p, miR-122-5p, miR-1271-5p, miR-133a-3p, miR-184, miR-203a-3p, and miR-206 are key players in regulating ovarian cancer and chemosensitivity by affecting cell cycle progression, cell proliferation, and cell development. We examined polycystic ovary syndrome and premature ovarian insufficiency and identified the altered expression of various miRNAs, such as miR-125b-5p and miR-130b-3p, for diagnostic insights. This study highlights the potential of enhanced exosomes as new therapeutic agents for women's reproductive health, offering a detailed understanding of the impact of their cargo on ovarian disorders.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 76198-13159, Iran
| | - Shao Huan Samuel Weng
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA; (S.H.S.W.); (A.H.)
| | - Allen Huff
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA; (S.H.S.W.); (A.H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| |
Collapse
|
2
|
Lee CC, Lee AW, Wei PL, Liu YS, Chang YJ, Huang CY. In silico analysis to identify miR-1271-5p/PLCB4 (phospholipase C Beta 4) axis mediated oxaliplatin resistance in metastatic colorectal cancer. Sci Rep 2023; 13:4366. [PMID: 36927770 PMCID: PMC10020571 DOI: 10.1038/s41598-023-31331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Oxaliplatin (OXA) is the first-line chemotherapy drug for metastatic colorectal cancer (mCRC), and the emergence of drug resistance is a major clinical challenge. Although there have been numerous studies on OXA resistance, but its underlying molecular mechanisms are still unclear. This study aims to identify key regulatory genes and pathways associated with OXA resistance. The Gene Expression Omnibus (GEO) GSE42387 dataset containing gene expression profiles of parental and OXA-resistant LoVo cells was applied to explore potential targets. GEO2R, STRING, CytoNCA (a plug-in of Cytoscape), and DAVID were used to analyze differentially expressed genes (DEGs), protein-protein interactions (PPIs), hub genes in PPIs, and gene ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. R2 online platform was used to run a survival analysis of validated hub genes enriched in KEGG pathways. The ENCORI database predicted microRNAs for candidate genes. A survival analysis of those genes was performed, and validated using the OncoLnc database. In addition, the 'clusterProfiler' package in R was used to perform gene set enrichment analysis (GSEA). We identified 395 DEGs, among which 155 were upregulated and 240 were downregulated. In total, 95 DEGs were screened as hub genes after constructing the PPI networks. Twelve GO terms and three KEGG pathways (steroid hormone biosynthesis, malaria, and pathways in cancer) were identified as being significant in the enrichment analysis of hub genes. Twenty-one hub genes enriched in KEGG pathways were defined as key genes. Among them AKT3, phospholipase C Beta 4 (PLCB4), and TGFB1 were identified as OXA-resistance genes through the survival analysis. High expressions of AKT3 and TGFB1 were each associated with a poor prognosis, and lower expression of PLCB4 was correlated with worse survival. Further, high levels of hsa-miR-1271-5p, which potentially targets PLCB4, were associated with poor overall survival in patients with CRC. Finally, we found that PLCB4 low expression was associated with MAPK signaling pathway and VEGF signaling pathway in CRC. Our results demonstrated that hsa-miR-1271-5p/PLCB4 in the pathway in cancer could be a new potential therapeutic target for mCRC with OXA resistance.
Collapse
Affiliation(s)
- Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ai-Wei Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC.,Cancer Research Center and Translational Laboratory, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yi-Shin Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC. .,Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
| |
Collapse
|
3
|
Functional roles of long noncoding RNA MALAT1 in gynecologic cancers. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:48-65. [PMID: 36042115 DOI: 10.1007/s12094-022-02914-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
Abstract
Gynecologic cancers are reproductive disorders characterized by pelvic pain and infertility. The identification of new predictive markers and therapeutic targets for the treatment of gynecologic cancers is urgently necessary. One of the recent successes in gynecologic cancers research is identifying the role of signaling pathways in the pathogenesis of the disease. Recent experiments showed long noncoding RNAs (lncRNA) can be novel therapeutic approaches for the diagnosis and treatment of gynecologic cancers. LncRNA are transcribed RNA molecules that play pivotal roles in multiple biological processes by regulating the different steps of gene expression. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA that plays functional roles in gene expression, RNA processing, and epigenetic regulation. High expression of MALAT1 is closely related to numerous human diseases. It is generally believed that MALAT1 expression is associated with cancer cell growth, autophagy, invasion, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) could contribute to the pathogenesis of gynecologic cancers. In this review, we will summarize functional roles of MALAT1 in the most common gynecologic cancers, including endometrium, breast, ovary, and cervix.
Collapse
|
4
|
hsa_circ_0084811 Regulates Cell Proliferation and Apoptosis in Retinoblastoma through miR-18a-5p/miR-18b-5p/E2F5 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6918396. [PMID: 35909488 PMCID: PMC9325647 DOI: 10.1155/2022/6918396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Background Retinoblastoma (RB) is the commonest primary intraocular malignancy during childhood. Circular RNAs (circRNAs) act as regulators in RB development, and hsa_circ_E2F5 (circ_0084811 in this study) was found to be highly expressed in RB cells, so we wanted to identify its detailed molecular mechanism. Methods The expression level of circ_0084811 in RB cells was tested by RT-qPCR and its effects on RB cells were evaluated through functional assays. The regulatory mechanism that circ_0084811 may exert in RB progression was testified through mechanism experiments. Results High circ_0084811 expression in RB cells facilitated cell proliferation but inhibited cell apoptosis. The enrichment of acetylation of histone 3 lysine 27 (H3K27ac) in circ_0084811 promoter induced circ_0084811 upregulation. Moreover, circ_0084811 regulated E2F transcription factor 5 (E2F5) expression via sponging microRNA-18a-5p (miR-18a-5p) and microRNA-18b-5p (miR-18b-5p). Conclusion circ_0084811 modulated RB progression via the miR-18a-5p/miR-18b-5p/E2F5 axis.
Collapse
|
5
|
Corrêa S, Lopes FP, Panis C, Basili T, Binato R, Abdelhay E. miRNome Profiling Reveals Shared Features in Breast Cancer Subtypes and Highlights miRNAs That Potentially Regulate MYB and EZH2 Expression. Front Oncol 2021; 11:710919. [PMID: 34646766 PMCID: PMC8502886 DOI: 10.3389/fonc.2021.710919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Breast cancer (BC) has been extensively studied, as it is one of the more commonly diagnosed cancer types worldwide. The study of miRNAs has increased what is known about the complexity of pathways and signaling and has identified potential biomarkers and therapeutic targets. Thus, miRNome profiling could provide important information regarding the molecular mechanisms involved in BC. On average, more than 430 miRNAs were identified as differentially expressed between BC cell lines and normal breast HMEC cells. From these, 110 miRNAs were common to BC subtypes. The miRNome enrichment analysis and interaction maps highlighted epigenetic-related pathways shared by all BC cell lines and revealed potential miRNA targets. Quantitative evaluation of BC patient samples and GETx/TCGA-BRCA datasets confirmed MYB and EZH2 as potential targets from BC miRNome. Moreover, overall survival was impacted by EZH2 expression. The expression of 15 miRNAs, selected according to aggressiveness of BC subtypes, was confirmed in TCGA-BRCA dataset. Of these miRNAs, miRNA-mRNA interaction prediction revealed 7 novel or underexplored miRNAs in BC: miR-1271-5p, miR-130a-5p, and miR-134 as MYB regulators and miR-138-5p, miR-455-3p, miR-487a, and miR-487b as EZH2 regulators. Herein, we report a novel molecular miRNA signature for BC and identify potential miRNA/mRNAs involved in disease subtypes.
Collapse
Affiliation(s)
- Stephany Corrêa
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Francisco P Lopes
- Grupo de Biologia do Desenvolvimento e Sistemas Dinâmicos, Universidade Federal do Rio de Janeiro (UFRJ), Duque de Caxias, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão, Brazil
| | - Thais Basili
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Renata Binato
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Centro de Transplante de Medula Óssea (CEMO), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
7
|
Wang Y, Wang X, Han L, Hu D. LncRNA MALAT1 Regulates the Progression and Cisplatin Resistance of Ovarian Cancer Cells via Modulating miR-1271-5p/E2F5 Axis. Cancer Manag Res 2020; 12:9999-10010. [PMID: 33116856 PMCID: PMC7567574 DOI: 10.2147/cmar.s261979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were reported to be related to the development of ovarian cancer (OC). In this study, the functional mechanisms of lncRNA metastasis associated with lung adenocarcinoma transcript 1 (MALAT1) and microRNA-1271-5p (miR-1271-5p) were explored in OC. Methods The level of MALAT1, miR-1271-5p, or E2F transcription factor 5 (E2F5) was detected by qRT-PCR. MTT assay, flow cytometry analysis and transwell migration and invasion assays were performed to determine cell proliferation, apoptosis, migration and invasion, respectively. E2F5 protein expression was detected by Western blot. The interaction between miR-1271-5p and MALAT1 or E2F transcription factor 5 (E2F5) was confirmed by the dual-luciferase reporter assay. Results MALAT1 and E2F5 level were increased, while miR-1271-5p level was decreased in cisplatin (DDP)-resistant OC tissues and cells. MALAT1 knockdown or miR-1271-5p upregulation decreased IC50 of cisplatin, and inhibited cell proliferation, migration, invasion, and facilitated cell apoptosis in DDP-resistant OC cells. Moreover, MALAT1 sponged miR-1271-5p to upregulate E2F5 expression. Besides, MALAT1 knockdown decreased DDP resistance, inhibited cell proliferation, migration, invasion, and promoted cell apoptosis by sponging miR-1271-5p to downregulate E2F5 expression in DDP-resistant OC cell. Conclusion We demonstrated that MALAT1 mediated DDP-resistant OC development through miR-1271-5p/E2F5 axis, providing the theoretical basis for OC therapy.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Xiuying Wang
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Liwei Han
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Dongdong Hu
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| |
Collapse
|