1
|
Aguiar RPSD, Souza JMT, de Menezes AAPM, do Nascimento MLLB, de Castro E Sousa JM, Cavalcante AADCM, Ferreira PMP, Araújo AJ, Marinho-Filho JDB. Ascorbic acid regulates in vitro and in vivo toxicogenetic effects of hydroxyurea on eukaryotic cells. Drug Chem Toxicol 2024:1-10. [PMID: 39538962 DOI: 10.1080/01480545.2024.2425990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Hydroxyurea (HU) exerts unique and diverse biological effects as an anti-leukemic agent, irradiation sensitizer, and HbS inducer in patients with sickle cell anemia. Herein, we assessed the potential toxicogenic and/or oxidant effects of hydroxyurea associated with ascorbic acid by in vivo examinations in Allium cepa and human cancer cells and systemically on mice tissues. Growing A. cepa roots and HCT-116 colorectal tumor cells were examined after HU and HU plus ascorbic acid exposure. DNA damage and antioxidant enzymatic activity were quantified in peripheral blood mononuclear cells (PBMC), bone marrow leukocytes and livers of mice after 7 day-HU treatment (7.5, 15 and 30 mg/kg/day) and Vitamin C 2 μM. Hydroxyurea presented toxic effects on meristematic Allium cepa cells, causing chromosomal abnormalities and reduction of mitotic index, killed HCT-116 colorectal carcinoma cells and induced DNA injuries upon mice cells (hepatocytes, bone marrow leukocytes and PBMC). Simultaneously, hydroxyurea decreased levels of CAT and GSH activities and expand lipid peroxidation. All these biochemical and physiological changes were ameliorated when associated with ascorbic acid, indicating it restored antioxidant enzymes, decreased MDA levels, removed peroxides and, consequently, presented cytoprotection against HU-provoked cellular damage in normal cells. On the other hand, antioxidants compounds may interfere on effectiveness of HU during anticancer chemotherapies.
Collapse
Affiliation(s)
- Raí Pablo Sousa de Aguiar
- Cell Culture Laboratory of the Delta (LCCDelta), Parnaiba Delta Federal University, Parnaíba, Brazil
| | - Jéssica Maria Teles Souza
- Cell Culture Laboratory of the Delta (LCCDelta), Parnaiba Delta Federal University, Parnaíba, Brazil
| | - Ag-Anne Pereira Melo de Menezes
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Maria Luísa Lima Barreto do Nascimento
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ana Amélia de Carvalho Melo Cavalcante
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Ana Jérsia Araújo
- Cell Culture Laboratory of the Delta (LCCDelta), Parnaiba Delta Federal University, Parnaíba, Brazil
| | | |
Collapse
|
2
|
Genc S, Cicek B, Yeni Y, Kuzucu M, Hacimuftuoglu A, Bolat I, Yildirim S, Zaker H, Zachariou A, Sofikitis N, Mamoulakis C, Tsatsakis A, Taghizadehghalehjoughi A. Morinda citrifolia protective effects on paclitaxel-induced testis parenchyma toxicity: An experimental study. Reprod Toxicol 2024; 127:108611. [PMID: 38782144 DOI: 10.1016/j.reprotox.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The current study aimed to investigate the sensitivity of male testis parenchyma cells to chemotherapy agents and the protective effects and mechanisms of Morinda citrifolia (Noni) administration against structural and functional changes before and after chemotherapy (Paclitaxel (PTX)). For this purpose, rats were randomly assigned into four groups (Control = G1, PTX 5 mg/kg = G2; PTX + Noni 10 mg/kg = G3, PTX + Noni 20 mg/kg = G4). PTX was injected intraperitoneally for 4 consecutive weeks, at a dose of 5 mg/kg to all groups except the control group. Then noni was administrated in 10 (G3) and 20 (G4) mg/kg groups orally (gavage) for 14 days. Biochemical analyses, Real-Time Polymerase Chain Reaction (PCR), and immunohistochemical analyses were performed. According to our results, Total Oxidative Stress (TOS) and Malondialdehyde (MDA) were significantly increased in the PTX group (P < 0.01). Superoxide Dismutase (SOD) enzyme activity and Total Antioxidant Capacity (TAC) levels were decreased (P < 0.01). The changes in the rats treated with PTX + Noni 20 mg/kg were noteworthy. The increased levels of IL1-β (Interleukin 1 beta) and TNFα (tumor necrosis factor-alpha) with PTX were down-regulated after treatment with PTX + Noni 20 mg/kg (P < 0.01) (9 % and 5 % respectively). In addition, Noni restored the testicular histopathological structure by reducing caspase-3 expression and significantly (61 %) suppressed oxidative DNA damage and apoptosis (by regulating the Bax (bcl-2-like protein 4)/Bcl-2 (B-cell lymphoma gene-2) ratio). In conclusion, Noni reduced cellular apoptosis and drastically changed Caspase 8 and Bax/Bcl-2 levels. Furthermore, it considerably decreases oxidative damage and can be used in testicular degeneration.
Collapse
Affiliation(s)
- Sidika Genc
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Yesim Yeni
- Faculty of Medicine, Department of Medical Pharmacology, Malatya Turgut Ozal University, Malatya 44210, Turkey
| | - Mehmet Kuzucu
- Faculty of Arts and Sciences, Department of Biology, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum 25240, Turkey
| | - Ismail Bolat
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum 25240, Turkey
| | - Serkan Yildirim
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum 25240, Turkey
| | - Himasadat Zaker
- Histology and Microscopic Analysis division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Islamic Republic of Iran
| | | | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, Ioannina, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey.
| |
Collapse
|
3
|
Łaszczych D, Czernicka A, Gostomczyk K, Szylberg Ł, Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives. Med Oncol 2024; 41:187. [PMID: 38918274 PMCID: PMC11199243 DOI: 10.1007/s12032-024-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland.
| | - Aleksandra Czernicka
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| |
Collapse
|
4
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|