1
|
Moustaki M, Paschou SA, Vakali E, Xekouki P, Ntali G, Kassi E, Peppa M, Psaltopoulou T, Tzanela M, Vryonidou A. Secondary diabetes mellitus in pheochromocytomas and paragangliomas. Endocrine 2023; 82:467-479. [PMID: 37731140 PMCID: PMC10618385 DOI: 10.1007/s12020-023-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/10/2023] [Indexed: 09/22/2023]
Abstract
Secondary diabetes mellitus (DM) in secretory pheochromocytomas and paragangliomas (PPGLs) is encountered in up to 50% of cases, with its presentation ranging from mild, insulin resistant forms to profound insulin deficiency states, such as diabetic ketoacidosis and hyperglycemic hyperosmolar state. PPGLs represent hypermetabolic states, in which adrenaline and noradrenaline induce insulin resistance in target tissues characterized by aerobic glycolysis, excessive lipolysis, altered adipokine expression, subclinical inflammation, as well as enhanced gluconeogenesis and glucogenolysis. These effects are mediated both directly, upon adrenergic receptor stimulation, and indirectly, via increased glucagon secretion. Impaired insulin secretion is the principal pathogenetic mechanism of secondary DM in this setting; yet, this is relevant for tumors with adrenergic phenotype, arising from direct inhibitory actions in beta pancreatic cells and incretin effect impairment. In contrast, insulin secretion might be enhanced in tumors with noradrenergic phenotype. This dimorphic effect might correspond to two distinct glycemic phenotypes, with predominant insulin resistance and insulin deficiency respectively. Secondary DM improves substantially post-surgery, with up to 80% remission rate. The fact that surgical treatment of PPGLs restores insulin sensitivity and secretion at greater extent compared to alpha and beta blockade, implies the existence of further, non-adrenergic mechanisms, possibly involving other hormonal co-secretion by these tumors. DM management in PPGLs is scarcely studied. The efficacy and safety of newer anti-diabetic medications, such as glucagon-like peptide 1 receptor agonists and sodium glucose cotransporter 2 inhibitors (SGLT2is), as well as potential disease-modifying roles of metformin and SGLT2is warrant further investigation in future studies.
Collapse
Affiliation(s)
- Melpomeni Moustaki
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Elena Vakali
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | - Paraskevi Xekouki
- Department of Endocrinology and Diabetes, University General Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Greece
| | - Georgia Ntali
- Department of Endocrinology and Diabetes Center, Endo ERN Center, Evaggelismos Hospital, Athens, Greece
| | - Evanthia Kassi
- Endocrine Unit, First Department of Propaedeutic and Internal Medicine, Laiko Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Melpomeni Peppa
- Endocrine Unit and Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinella Tzanela
- Department of Endocrinology and Diabetes Center, Endo ERN Center, Evaggelismos Hospital, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| |
Collapse
|
2
|
Odarenko KV, Salomatina OV, Chernikov IV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone Methyl Reduces the Stimulatory Effect of Leptin on the Aggressive Phenotype of Murine Neuro2a Neuroblastoma Cells via the MAPK/ERK1/2 Pathway. Pharmaceuticals (Basel) 2023; 16:1369. [PMID: 37895840 PMCID: PMC10610011 DOI: 10.3390/ph16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the proven tumorigenic effect of leptin on epithelial-derived cancers, its impact on the aggressiveness of neural crest-derived cancers, notably neuroblastoma, remains largely unexplored. In our study, for the first time, transcriptome analysis of neuroblastoma tissue demonstrated that the level of leptin is elevated in neuroblastoma patients along with the severity of the disease and is inversely correlated with patient survival. The treatment of murine Neuro2a neuroblastoma cells with leptin significantly stimulated their proliferation and motility and reduced cell adhesion, thus rendering the phenotype of neuroblastoma cells more aggressive. Given the proven efficacy of cyanoenone-bearing semisynthetic triterpenoids in inhibiting the growth of neuroblastoma and preventing obesity in vivo, the effect of soloxolone methyl (SM) on leptin-stimulated Neuro2a cells was further investigated. We found that SM effectively abolished leptin-induced proliferation of Neuro2a cells by inducing G1/S cell cycle arrest and restored their adhesiveness to extracellular matrix (ECM) proteins to near control levels through the upregulation of vimentin, zonula occludens protein 1 (ZO-1), cell adhesion molecule L1 (L1cam), and neural cell adhesion molecule 1 (Ncam1). Moreover, SM significantly suppressed the leptin-associated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and ribosomal protein S6 kinase A1 (p90RSK), which are key kinases that ensure the survival and proliferation of cancer cells. Further molecular modeling studies demonstrated that the inhibitory effect of SM on the mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathway can be mediated by its direct interaction with ERK2 and its upstream regulators, son of sevenless homolog 1 (SOS) and mitogen-activated protein kinase kinase 1 (MEK1). Taken together, our findings in murine Neuro2a cells provide novel evidence of the stimulatory effect of leptin on the aggressiveness of neuroblastoma, which requires further detailed studies in human neuroblastoma cells and relevant animal models. The obtained results indicate that SM can be considered a promising drug candidate capable of reducing the impact of adipokines on tumor progression.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| |
Collapse
|
3
|
Soldato M, Cipolla C, Rigante D, Manna R. Fever of unknown origin and systemic inflammation revealing a pheochromocytoma. Minerva Endocrinol (Torino) 2021; 46:482-484. [PMID: 33880895 DOI: 10.23736/s2724-6507.21.03434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manuel Soldato
- Department of Internal Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Clelia Cipolla
- Department of Life Sciences and Global Health, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
| | - Donato Rigante
- Department of Life Sciences and Global Health, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Rare Diseases and Periodic Fevers Research Center, Sacred Heart Catholic University, Rome, Italy
| | - Raffaele Manna
- Department of Internal Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Rare Diseases and Periodic Fevers Research Center, Sacred Heart Catholic University, Rome, Italy
| |
Collapse
|