1
|
Stanzione A, Cuocolo R, Bombace C, Pesce I, Mainolfi CG, De Giorgi M, Delli Paoli G, La Selva P, Petrone J, Camera L, Klain M, Del Vecchio S, Cuocolo A, Maurea S. Prediction of 2-[ 18F]FDG PET-CT SUVmax for Adrenal Mass Characterization: A CT Radiomics Feasibility Study. Cancers (Basel) 2023; 15:3439. [PMID: 37444549 DOI: 10.3390/cancers15133439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Indeterminate adrenal masses (AM) pose a diagnostic challenge, and 2-[18F]FDG PET-CT serves as a problem-solving tool. Aim of this study was to investigate whether CT radiomics features could be used to predict the 2-[18F]FDG SUVmax of AM. METHODS Patients with AM on 2-[18F]FDG PET-CT scan were grouped based on iodine contrast injection as CT contrast-enhanced (CE) or CT unenhanced (NCE). Two-dimensional segmentations of AM were manually obtained by multiple operators on CT images. Image resampling and discretization (bin number = 16) were performed. 919 features were calculated using PyRadiomics. After scaling, unstable, redundant, and low variance features were discarded. Using linear regression and the Uniform Manifold Approximation and Projection technique, a CT radiomics synthetic value (RadSV) was obtained. The correlation between CT RadSV and 2-[18F]FDG SUVmax was assessed with Pearson test. RESULTS A total of 725 patients underwent PET-CT from April 2020 to April 2021. In 150 (21%) patients, a total of 179 AM (29 bilateral) were detected. Group CE consisted of 84 patients with 108 AM (size = 18.1 ± 4.9 mm) and Group NCE of 66 patients with 71 AM (size = 18.5 ± 3.8 mm). In both groups, 39 features were selected. No statisticallyf significant correlation between CT RadSV and 2-[18F]FDG SUVmax was found (Group CE, r = 0.18 and p = 0.058; Group NCE, r = 0.13 and p = 0.27). CONCLUSIONS It might not be feasible to predict 2-[18F]FDG SUVmax of AM using CT RadSV. Its role as a problem-solving tool for indeterminate AM remains fundamental.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy
| | - Claudia Bombace
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Ilaria Pesce
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Ciro Gabriele Mainolfi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Marco De Giorgi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Gregorio Delli Paoli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Pasquale La Selva
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Jessica Petrone
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Camera
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
2
|
Amrane K, Thuillier P, Bourhis D, Le Meur C, Quere C, Leclere JC, Ferec M, Jestin-Le Tallec V, Doucet L, Alemany P, Salaun PY, Metges JP, Schick U, Abgral R. Prognostic value of pre-therapeutic FDG-PET radiomic analysis in gastro-esophageal junction cancer. Sci Rep 2023; 13:5789. [PMID: 37031233 PMCID: PMC10082755 DOI: 10.1038/s41598-023-31587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/14/2023] [Indexed: 04/10/2023] Open
Abstract
The main aim of this study was to evaluate the prognostic value of radiomic approach in pre-therapeutic 18F-fluorodeoxyglucose positron-emission tomography (FDG-PET/CT) in a large cohort of patients with gastro-esophageal junction cancer (GEJC). This was a retrospective monocenter study including 97 consecutive patients with GEJC who underwent a pre-therapeutic FDG-PET and were followed up for 3 years. Standard first-order radiomic PET indices including SUVmax, SUVmean, SUVpeak, MTV and TLG and 32 textural features (TFs) were calculated using LIFEx software on PET imaging. Prognostic significance of these parameters was assessed in univariate and multivariate analysis. Relapse-free survival (RFS) and overall survival (OS) were respectively chosen as primary and secondary endpoints. An internal validation cohort was used by randomly drawing one-third of included patients. The main characteristics of this cohort were: median age of 65 years [41-88], sex ratio H/F = 83/14, 81.5% of patients with a histopathology of adenocarcinoma and 43.3% with a stage IV disease. The median follow-up was 28.5 months [4.2-108.5]. Seventy-seven (79.4%) patients had locoregional or distant progression or recurrence and 71 (73.2%) died. In univariate analysis, SUVmean, Histogram-Entropy and 2 TFs (GLCM-Homogeneity and GLCM-Energy) were significantly correlated with RFS and OS, as well as 2 others TFs (GLRLM-LRE and GLRLM-GLNU) with OS only. In multivariate analysis, Histogram-Entropy remained an independent prognostic factor of both RFS and OS whereas SUVmean was an independent prognostic factor of OS only. These results were partially confirmed in our internal validation cohort of 33 patients. Our results suggest that radiomic approach reveals independent prognostic factors for survival in patients with GEJC.
Collapse
Affiliation(s)
- Karim Amrane
- Department of Oncology, Regional Hospital of Morlaix, Morlaix, France.
| | - Philippe Thuillier
- Department of Endocrinology, University Hospital of Brest, Brest, France
- UMR Inserm 1304 GETBO, IFR 148, University of Western Brittany, Brest, France
| | - David Bourhis
- UMR Inserm 1304 GETBO, IFR 148, University of Western Brittany, Brest, France
- Department of Nuclear Medicine, University Hospital of Brest, 2 Avenue Foch, 29609, Brest Cedex, France
| | - Coline Le Meur
- Department of Oncology, University Hospital of Brest, Brest, France
| | - Chloe Quere
- Department of Nuclear Medicine, University Hospital of Brest, 2 Avenue Foch, 29609, Brest Cedex, France
| | | | - Marc Ferec
- Department of Gastroenterology, Regional Hospital of Morlaix, Morlaix, France
| | | | - Laurent Doucet
- Department of Pathology, University Hospital of Brest, Brest, France
| | - Pierre Alemany
- Department of Pathology, Ouestpathology Brest, Brest, France
| | - Pierre-Yves Salaun
- UMR Inserm 1304 GETBO, IFR 148, University of Western Brittany, Brest, France
- Department of Nuclear Medicine, University Hospital of Brest, 2 Avenue Foch, 29609, Brest Cedex, France
| | | | - Ulrike Schick
- Department of Radiotherapy, University Hospital of Brest, Brest, France
| | - Ronan Abgral
- UMR Inserm 1304 GETBO, IFR 148, University of Western Brittany, Brest, France.
- Department of Nuclear Medicine, University Hospital of Brest, 2 Avenue Foch, 29609, Brest Cedex, France.
| |
Collapse
|
3
|
Pantic IV, Shakeel A, Petroianu GA, Corridon PR. Analysis of Vascular Architecture and Parenchymal Damage Generated by Reduced Blood Perfusion in Decellularized Porcine Kidneys Using a Gray Level Co-occurrence Matrix. Front Cardiovasc Med 2022; 9:797283. [PMID: 35360034 PMCID: PMC8963813 DOI: 10.3389/fcvm.2022.797283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
There is no cure for kidney failure, but a bioartificial kidney may help address this global problem. Decellularization provides a promising platform to generate transplantable organs. However, maintaining a viable vasculature is a significant challenge to this technology. Even though angiography offers a valuable way to assess scaffold structure/function, subtle changes are overlooked by specialists. In recent years, various image analysis methods in radiology have been suggested to detect and identify subtle changes in tissue architecture. The aim of our research was to apply one of these methods based on a gray level co-occurrence matrix (Topalovic et al.) computational algorithm in the analysis of vascular architecture and parenchymal damage generated by hypoperfusion in decellularized porcine. Perfusion decellularization of the whole porcine kidneys was performed using previously established protocols. We analyzed and compared angiograms of kidneys subjected to pathophysiological arterial perfusion of whole blood. For regions of interest Santos et al. covering kidney medulla and the main elements of the vascular network, five major GLCM features were calculated: angular second moment as an indicator of textural uniformity, inverse difference moment as an indicator of textural homogeneity, GLCM contrast, GLCM correlation, and sum variance of the co-occurrence matrix. In addition to GLCM, we also performed discrete wavelet transform analysis of angiogram ROIs by calculating the respective wavelet coefficient energies using high and low-pass filtering. We report statistically significant changes in GLCM and wavelet features, including the reduction of the angular second moment and inverse difference moment, indicating a substantial rise in angiogram textural heterogeneity. Our findings suggest that the GLCM method can be successfully used as an addition to conventional fluoroscopic angiography analyses of micro/macrovascular integrity following in vitro blood perfusion to investigate scaffold integrity. This approach is the first step toward developing an automated network that can detect changes in the decellularized vasculature.
Collapse
Affiliation(s)
- Igor V Pantic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,University of Haifa, Haifa, Israel
| | - Adeeba Shakeel
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg A Petroianu
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC, United States.,Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Katal S, Eibschutz LS, Saboury B, Gholamrezanezhad A, Alavi A. Advantages and Applications of Total-Body PET Scanning. Diagnostics (Basel) 2022; 12:diagnostics12020426. [PMID: 35204517 PMCID: PMC8871405 DOI: 10.3390/diagnostics12020426] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have focused on the development of total-body PET scanning in a variety of fields such as clinical oncology, cardiology, personalized medicine, drug development and toxicology, and inflammatory/infectious disease. Given its ultrahigh detection sensitivity, enhanced temporal resolution, and long scan range (1940 mm), total-body PET scanning can not only image faster than traditional techniques with less administered radioactivity but also perform total-body dynamic acquisition at a longer delayed time point. These unique characteristics create several opportunities to improve image quality and can provide a deeper understanding regarding disease detection, diagnosis, staging/restaging, response to treatment, and prognostication. By reviewing the advantages of total-body PET scanning and discussing the potential clinical applications for this innovative technology, we can address specific issues encountered in routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Sanaz Katal
- Independent Researcher, Melbourne 3000, Australia;
| | - Liesl S. Eibschutz
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|