1
|
Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput Biol Med 2023; 152:106364. [PMID: 36525832 DOI: 10.1016/j.compbiomed.2022.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos T Skenteris
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Balsano C, Alisi A, Brunetto MR, Invernizzi P, Burra P, Piscaglia F. The application of artificial intelligence in hepatology: A systematic review. Dig Liver Dis 2022; 54:299-308. [PMID: 34266794 DOI: 10.1016/j.dld.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The integration of human and artificial intelligence (AI) in medicine has only recently begun but it has already become obvious that intelligent systems can dramatically improve the management of liver diseases. Big data made it possible to envisage transformative developments of the use of AI for diagnosing, predicting prognosis and treating liver diseases, but there is still a lot of work to do. If we want to achieve the 21st century digital revolution, there is an urgent need for specific national and international rules, and to adhere to bioethical parameters when collecting data. Avoiding misleading results is essential for the effective use of AI. A crucial question is whether it is possible to sustain, technically and morally, the process of integration between man and machine. We present a systematic review on the applications of AI to hepatology, highlighting the current challenges and crucial issues related to the use of such technologies.
Collapse
Affiliation(s)
- Clara Balsano
- Dept. of Life, Health and Environmental Sciences MESVA, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100, Coppito, L'Aquila. Italy; Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maurizia R Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, University Hospital of Pisa, Pisa, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology, Gastroenterology, Padua University Hospital, Padua, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Laganà A. The Architecture of a Precision Oncology Platform. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:1-22. [DOI: 10.1007/978-3-030-91836-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Kim C, Cho HH, Choi JY, Franks TJ, Han J, Choi Y, Lee SH, Park H, Lee KS. Pleomorphic carcinoma of the lung: Prognostic models of semantic, radiomics and combined features from CT and PET/CT in 85 patients. Eur J Radiol Open 2021; 8:100351. [PMID: 34041307 PMCID: PMC8141891 DOI: 10.1016/j.ejro.2021.100351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION To demonstrate semantic, radiomics, and the combined risk models related to the prognoses of pulmonary pleomorphic carcinomas (PCs). METHODS We included 85 patients (M:F = 71:14; age, 35-88 [mean, 63 years]) whose imaging features were divided into training (n = 60) and test (n = 25) sets. Nineteen semantic and 142 radiomics features related to tumors were computed. Semantic risk score (SRS) model was built using the Cox-least absolute shrinkage and selection operator (LASSO) approach. Radiomics risk score (RRS) from CT and PET features and combined risk score (CRS) adopting both semantic and radiomics features were also constructed. Risk groups were stratified by the median of the risk scores of the training set. Survival analysis was conducted with the Kaplan-Meier plots. RESULTS Of 85 PCs, adenocarcinoma was the most common epithelial component found in 63 (73 %) tumors. In SRS model, four features were stratified into high- and low-risk groups (HR, 4.119; concordance index ([C-index], 0.664) in the test set. In RRS model, five features helped improve the stratification (HR, 3.716; C-index, 0.591) and in CRS model, three features helped perform the best stratification (HR, 4.795; C-index, 0.617). The two significant features of CRS models were the SUVmax and the histogram feature of energy ([CT Firstorder Energy]). CONCLUSION In PCs of the lungs, the combined model leveraging semantic and radiomics features provides a better prognosis compared to using semantic and radiomics features separately. The high SUVmax of solid portion (CT Firstorder Energy) of tumors is associated with poor prognosis in lung PCs.
Collapse
Key Words
- C-index, Concordance index
- CRS, Combined risk score
- DL, Deep learning
- GCLM, Gray-level co-occurrence matrix
- HR, Hazard ration
- ICC, Intra-class correlation
- ISZM, Intensity size zone matrix
- KRAS, Kirsten rat sarcoma viral oncogene homolog
- LASSO, Least absolute shrinkage and selection operator
- LDA, Low density area
- Lung
- MRI, Magnetic resonance imaging
- MTV, Metabolic tumor volume
- Non-small cell carcinoma
- PC, Pleomorphic carcinoma
- PET/CT, Positron emission tomography/Computed tomography
- Pleomorphic carcinoma
- Prognosis
- ROI, Region of interest
- RRS, Radiomics risk score
- Radiomics
- SRS, Semantic risk score
- SUVavg, Average standardized uptake value
- SUVmax, Maximum standardized uptake value
- TLG, Total lesion glycolysis
- VOI, Volume of interest
Collapse
Affiliation(s)
- Chohee Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Hwan-ho Cho
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Teri J. Franks
- Department of Pulmonary and Mediastinal Pathology, Department of Defense, The Joint Pathology Center, Silver Spring, MD, USA
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Yeonu Choi
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| |
Collapse
|
5
|
Buckler AJ, Karlöf E, Lengquist M, Gasser TC, Maegdefessel L, Matic LP, Hedin U. Virtual Transcriptomics: Noninvasive Phenotyping of Atherosclerosis by Decoding Plaque Biology From Computed Tomography Angiography Imaging. Arterioscler Thromb Vasc Biol 2021; 41:1738-1750. [PMID: 33691476 PMCID: PMC8062292 DOI: 10.1161/atvbaha.121.315969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Andrew J. Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Elucid Bioimaging Inc., Boston, MA United States
| | - Eva Karlöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - T Christian Gasser
- KTH Solid Mechanics, Department or Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Yoon HJ, Park H, Lee HY, Sohn I, Ahn J, Lee SH. Prediction of tumor doubling time of lung adenocarcinoma using radiomic margin characteristics. Thorac Cancer 2020; 11:2600-2609. [PMID: 32705793 PMCID: PMC7471031 DOI: 10.1111/1759-7714.13580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Because shape or irregularity along the tumor perimeter can result from interactions between the tumor and the surrounding parenchyma, there could be a difference in tumor growth rate according to tumor margin or shape. However, no attempt has been made to evaluate the correlation between margin or shape features and tumor growth. Methods We evaluated 52 lung adenocarcinoma (ADC) patients who had at least two computed tomographic (CT) examinations before curative resection. Volume‐based doubling times (DTs) were calculated based on CT scans, and patients were divided into two groups according to the growth pattern (GP) of their ADCs (gradually growing tumors [GP I] vs. growing tumors with a temporary decrease in DT [GP II]). CT radiomic features reflecting margin characteristics were extracted, and radiomic features reflective of tumor DT were selected. Results Among the 52 patients, 41 (78.8%) were assigned to GP I and 11 (21.2%) to GP II. Of the 94 radiomic features extracted, eccentricity, surface‐to‐volume ratio, LoG uniformity (σ = 3.5), and LoG skewness (σ = 0.5) were ultimately selected for tumor DT prediction. Selected radiomic features in GP I were surface‐to‐volume ratio, contrast, LoG uniformity (σ = 3.5), and LoG skewness (σ = 0.5), similar to those for total subjects, whereas the radiomic features in GP II were solidity, energy, and busyness. Conclusions This study demonstrated the potential of margin‐related radiomic features to predict tumor DT in lung ADCs. Key points Significant findings of the study We found a relationship between margin‐related radiomic features and tumor doubling time. What this study adds Margin‐related radiomic features can potentially be used as noninvasive biomarkers to predict tumor doubling time in lung adenocarcinoma and inform treatment strategies.
Collapse
Affiliation(s)
- Hyun Jung Yoon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Radiology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Insuk Sohn
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Joonghyun Ahn
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Seung-Hak Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Kim KH, Kim J, Park H, Kim H, Lee SH, Sohn I, Lee HY, Park WY. Parallel comparison and combining effect of radiomic and emerging genomic data for prognostic stratification of non-small cell lung carcinoma patients. Thorac Cancer 2020; 11:2542-2551. [PMID: 32700470 PMCID: PMC7471051 DOI: 10.1111/1759-7714.13568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A single institution retrospective analysis of 124 non-small cell lung carcinoma (NSCLC) patients was performed to identify whether disease-free survival (DFS) achieves incremental values when radiomic and genomic data are combined with clinical information. METHODS Using the least absolute shrinkage and selection operator (LASSO) Cox regression method, radiomic and genetic features were reduced in number for selection of the most useful prognostic feature. We created four models using only baseline clinical data, clinical data with selected genetic features, clinical data with selected radiomic features, and clinical data with selected genetic and radiomic features together. Multivariate Cox proportional hazards analysis was performed to determine predictors of DFS. Receiver operating characteristic (ROC) calculation was made to compare the discriminative performance for DFS prediction by four constructed models at the five-year time point. RESULTS On precontrast scan, improved discrimination performance was obtained in a merging of selected radiomics and genetics (AUC = 0.8638), compared with clinical data only (AUC = 0.7990), selected genetic features (AUC = 0.8497), and selected radiomic features (AUC = 0.8355). On post-contrast scan, discrimination performance was improved (AUC = 0.8672) compared with the clinical variables (AUC = 0.7913), and selected genetic features (AUC = 0.8376) and selected radiomic features (AUC = 0.8399) were considered. CONCLUSIONS The combination of selected radiomic and genomic features improved stratification of NSCLC patients upon survival. Thus, integrating clinicopathologic model with radiomic and genomic features may lead to improved prognostic accuracy compared to conventional clinicopathological data alone. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: Receiver operating characteristic (ROC) calculation was made to compare the discriminative performance for disease-free survival (DFS). The discriminative performance for DFS was better when combining radiomic and genetic features compared to clinical data only, selected genetic features, and selected radiomic features. WHAT THIS STUDY ADDS The combination of selected radiomic and genomic features improved stratification of NSCLC patients upon survival. Thus, integrating a clinicopathological model with radiomic and genomic features may lead to improved prognostic accuracy compared to conventional clinicopathological data alone.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Radiology, Myongji Hospital, Goyang, South Korea
| | - Jinho Kim
- Samsung Genome Institute, Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
| | - Hankyul Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung-Hak Lee
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Insuk Sohn
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
8
|
Yoon HJ, Kang J, Park H, Sohn I, Lee SH, Lee HY. Deciphering the tumor microenvironment through radiomics in non-small cell lung cancer: Correlation with immune profiles. PLoS One 2020; 15:e0231227. [PMID: 32251447 PMCID: PMC7135211 DOI: 10.1371/journal.pone.0231227] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that the efficacy of immunotherapy in non-small cell lung cancers (NSCLCs) is associated with the immune microenvironment within the tumor. We aimed to explore radiologic phenotyping using a radiomics approach to assess the immune microenvironment in NSCLC. Two independent NSCLC cohorts (training and test sets) were included. Single-sample gene set enrichment analysis was used to determine the tumor microenvironment, where type 1 helper T (Th1) cells, type 2 helper T (Th2) cells, and cytotoxic T cells were the targets for prediction with computed tomographic (CT) radiomic features. Multiple algorithms were in the modeling followed by final model selection. The training dataset comprised 89 NSCLCs and the test set included 60 cases of lung squamous cell carcinoma and adenocarcinoma. A total of 239 CT radiomic features were used. A linear discriminant analysis model was selected for the final model of Th2 cell group prediction. The area under the curve value of the final model on the test set was 0.684. Predictors of the linear discriminant analysis model were skewness (total and outer pixels), kurtosis, variance (subsampled from delta [subtraction inner pixels from outer pixels]), and informational measure of correlation. The performances of radiomics on test set of Th1 and cytotoxic T cell were not accurate enough to be predictable. A radiomics approach can be used to interrogate an entire tumor in a noninvasive manner and provide added diagnostic value to identify the immune microenvironment of NSCLC, in particular, Th2 cell signatures.
Collapse
Affiliation(s)
- Hyun Jung Yoon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Radiology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Insuk Sohn
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Seung-Hak Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
9
|
Kim TJ, Kim CH, Lee HY, Chung MJ, Shin SH, Lee KJ, Lee KS. Management of incidental pulmonary nodules: current strategies and future perspectives. Expert Rev Respir Med 2019; 14:173-194. [PMID: 31762330 DOI: 10.1080/17476348.2020.1697853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Detection and characterization of pulmonary nodules is an important issue, because the process is the first step in the management of lung cancers.Areas covered: Literature review was performed on May 15 2019 by using the PubMed, US National Library of Medicine National Institutes of Health, and the National Center for Biotechnology information. CT features helping identify the druggable mutations and predict the prognosis of malignant nodules were presented. Technical advancements in MRI and PET/CT were introduced for providing functional information about malignant nodules. Advances in various tissue biopsy techniques enabling molecular analysis and histologic diagnosis of indeterminate nodules were also presented. New techniques such as radiomics, deep learning (DL) technology, and artificial intelligence showing promise in differentiating between malignant and benign nodules were summarized. Recently, updated management guidelines for solid and subsolid nodules incidentally detected on CT were described. Risk stratification and prediction models for indeterminate nodules under active investigation were briefly summarized.Expert opinion: Advancement in CT knowledge has led to a better correlation between CT features and genomic alterations or tumor histology. Recent advances like PET/CT, MRI, radiomics, and DL-based approach have shown promising results in the characterization and prognostication of pulmonary nodules.
Collapse
Affiliation(s)
- Tae Jung Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Cho Hee Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Ho Yun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Myung Jin Chung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Sun Hye Shin
- Respiratory and Critical Care Division of Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Kyung Jong Lee
- Respiratory and Critical Care Division of Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea
| |
Collapse
|
10
|
Abstract
Radiomics is an emerging field which extracts quantitative radiology data from medical images and explores their correlation with clinical outcomes in a non-invasive manner. This review aims to assess whether radiomics is a useful and reproducible method for clinical management of hepatocellular carcinoma (HCC) by reviewing the strengths and weaknesses of current radiomics literature pertaining specifically to HCC. From an initial set of 48 articles recovered through database searches, 23 articles were retained to be included in this review after full screening. Among these 23 studies, 7 used a radiomics approach in magnetic resonance imaging (MRI). Only two studies applied radiomics to positron emission tomography-computed tomography (PET-CT). In the remaining 14 articles, a radiomics analysis was performed on computed tomography (CT). Eight studies dealt with the relationship between biological signatures and imaging findings, and can be classified as radiogenomic studies. For each study included in our review, we computed a Radiomics Quality Score (RQS) as proposed by Lambin et al. We found that the RQS (mean ± standard deviation) was 8.35 ± 5.38 (out of a possible maximum value of 36). Although these scores are fairly low, and radiomics has not yet reached clinical utility in HCC, it is important to underscore the fact that these early studies pave the way for the radiomics field with a focus on HCC. Radiomics is still a very young field, and is far from being mature, but it remains a very promising technology for the future for developing adequate personalized treatment as a non-invasive approach, for complementing or replacing tumor biopsies, as well as for developing novel prognostic biomarkers in HCC patients.
Collapse
|
11
|
Antonelli L, Guarracino MR, Maddalena L, Sangiovanni M. Integrating imaging and omics data: A review. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Braman N, Prasanna P, Whitney J, Singh S, Beig N, Etesami M, Bates DDB, Gallagher K, Bloch BN, Vulchi M, Turk P, Bera K, Abraham J, Sikov WM, Somlo G, Harris LN, Gilmore H, Plecha D, Varadan V, Madabhushi A. Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer. JAMA Netw Open 2019; 2:e192561. [PMID: 31002322 PMCID: PMC6481453 DOI: 10.1001/jamanetworkopen.2019.2561] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE There has been significant recent interest in understanding the utility of quantitative imaging to delineate breast cancer intrinsic biological factors and therapeutic response. No clinically accepted biomarkers are as yet available for estimation of response to human epidermal growth factor receptor 2 (currently known as ERBB2, but referred to as HER2 in this study)-targeted therapy in breast cancer. OBJECTIVE To determine whether imaging signatures on clinical breast magnetic resonance imaging (MRI) could noninvasively characterize HER2-positive tumor biological factors and estimate response to HER2-targeted neoadjuvant therapy. DESIGN, SETTING, AND PARTICIPANTS In a retrospective diagnostic study encompassing 209 patients with breast cancer, textural imaging features extracted within the tumor and annular peritumoral tissue regions on MRI were examined as a means to identify increasingly granular breast cancer subgroups relevant to therapeutic approach and response. First, among a cohort of 117 patients who received an MRI prior to neoadjuvant chemotherapy (NAC) at a single institution from April 27, 2012, through September 4, 2015, imaging features that distinguished HER2+ tumors from other receptor subtypes were identified. Next, among a cohort of 42 patients with HER2+ breast cancers with available MRI and RNaseq data accumulated from a multicenter, preoperative clinical trial (BrUOG 211B), a signature of the response-associated HER2-enriched (HER2-E) molecular subtype within HER2+ tumors (n = 42) was identified. The association of this signature with pathologic complete response was explored in 2 patient cohorts from different institutions, where all patients received HER2-targeted NAC (n = 28, n = 50). Finally, the association between significant peritumoral features and lymphocyte distribution was explored in patients within the BrUOG 211B trial who had corresponding biopsy hematoxylin-eosin-stained slide images. Data analysis was conducted from January 15, 2017, to February 14, 2019. MAIN OUTCOMES AND MEASURES Evaluation of imaging signatures by the area under the receiver operating characteristic curve (AUC) in identifying HER2+ molecular subtypes and distinguishing pathologic complete response (ypT0/is) to NAC with HER2-targeting. RESULTS In the 209 patients included (mean [SD] age, 51.1 [11.7] years), features from the peritumoral regions better discriminated HER2-E tumors (maximum AUC, 0.85; 95% CI, 0.79-0.90; 9-12 mm from the tumor) compared with intratumoral features (AUC, 0.76; 95% CI, 0.69-0.84). A classifier combining peritumoral and intratumoral features identified the HER2-E subtype (AUC, 0.89; 95% CI, 0.84-0.93) and was significantly associated with response to HER2-targeted therapy in both validation cohorts (AUC, 0.80; 95% CI, 0.61-0.98 and AUC, 0.69; 95% CI, 0.53-0.84). Features from the 0- to 3-mm peritumoral region were significantly associated with the density of tumor-infiltrating lymphocytes (R2 = 0.57; 95% CI, 0.39-0.75; P = .002). CONCLUSIONS AND RELEVANCE A combination of peritumoral and intratumoral characteristics appears to identify intrinsic molecular subtypes of HER2+ breast cancers from imaging, offering insights into immune response within the peritumoral environment and suggesting potential benefit for treatment guidance.
Collapse
Affiliation(s)
- Nathaniel Braman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Prateek Prasanna
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jon Whitney
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Niha Beig
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Maryam Etesami
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - David D. B. Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine Gallagher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - B. Nicolas Bloch
- Department of Radiology, Boston Medical Center, Boston, Massachusetts
- Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
| | - Manasa Vulchi
- Department of Hematology and Medical Oncology, The Cleveland Clinic, Cleveland, Ohio
| | - Paulette Turk
- Department of Diagnostic Radiology, The Cleveland Clinic, Cleveland, Ohio
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jame Abraham
- Department of Hematology and Medical Oncology, The Cleveland Clinic, Cleveland, Ohio
| | - William M. Sikov
- Program in Women’s Oncology, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - George Somlo
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - Lyndsay N. Harris
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hannah Gilmore
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Donna Plecha
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio
| |
Collapse
|
13
|
Radiogenomics and Radiomics in Liver Cancers. Diagnostics (Basel) 2018; 9:diagnostics9010004. [PMID: 30591628 PMCID: PMC6468592 DOI: 10.3390/diagnostics9010004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022] Open
Abstract
Radiogenomics is a computational discipline that identifies correlations between cross-sectional imaging features and tissue-based molecular data. These imaging phenotypic correlations can then potentially be used to longitudinally and non-invasively predict a tumor’s molecular profile. A different, but related field termed radiomics examines the extraction of quantitative data from imaging data and the subsequent combination of these data with clinical information in an attempt to provide prognostic information and guide clinical decision making. Together, these fields represent the evolution of biomedical imaging from a descriptive, qualitative specialty to a predictive, quantitative discipline. It is anticipated that radiomics and radiogenomics will not only identify pathologic processes, but also unveil their underlying pathophysiological mechanisms through clinical imaging alone. Here, we review recent studies on radiogenomics and radiomics in liver cancers, including hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and metastases to the liver.
Collapse
|
14
|
Panayides AS, Pattichis MS, Leandrou S, Pitris C, Constantinidou A, Pattichis CS. Radiogenomics for Precision Medicine With a Big Data Analytics Perspective. IEEE J Biomed Health Inform 2018; 23:2063-2079. [PMID: 30596591 DOI: 10.1109/jbhi.2018.2879381] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Precision medicine promises better healthcare delivery by improving clinical practice. Using evidence-based substratification of patients, the objective is to achieve better prognosis, diagnosis, and treatment that will transform existing clinical pathways toward optimizing care for the specific needs of each patient. The wealth of today's healthcare data, often characterized as big data, provides invaluable resources toward new knowledge discovery that has the potential to advance precision medicine. The latter requires interdisciplinary efforts that will capitalize the information, know-how, and medical data of newly formed groups fusing different backgrounds and expertise. The objective of this paper is to provide insights with respect to the state-of-the-art research in precision medicine. More specifically, our goal is to highlight the fundamental challenges in emerging fields of radiomics and radiogenomics by reviewing the case studies of Cancer and Alzheimer's disease, describe the computational challenges from a big data analytics perspective, and discuss standardization and open data initiatives that will facilitate the adoption of precision medicine methods and practices.
Collapse
|
15
|
Jeong WK, Jamshidi N, Felker ER, Raman SS, Lu DS. Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol 2018; 25:21-29. [PMID: 30441889 PMCID: PMC6435966 DOI: 10.3350/cmh.2018.1007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
Concurrent advancements in imaging and genomic biomarkers have created opportunities to identify non-invasive imaging surrogates of molecular phenotypes. In order to develop such imaging surrogates radiomics and radiogenomics/imaging genomics will be necessary; there has been consistent progress in these fields for primary liver cancers. In this article we evaluate the current status of the field specifically with regards to hepatocellular carcinoma and intrahepatic cholangiocarcinoma, highlighting some of the up and coming results that were presented at the annual Radiological Society of North America Conference in 2017. There are an increasing number of studies in this area with a bias towards quantitative feature measurement, which is expected to benefit reproducibility of the findings and portends well for the future development of biomarkers for diagnosis, prognosis, and treatment response assessment. We review some of the advancements and look forward to some of the exciting future applications that are anticipated as the field develops.
Collapse
Affiliation(s)
- Woo Kyoung Jeong
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Neema Jamshidi
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ely Richard Felker
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven Satish Raman
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David Shinkuo Lu
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Sanduleanu S, Woodruff HC, de Jong EE, van Timmeren JE, Jochems A, Dubois L, Lambin P. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother Oncol 2018; 127:349-360. [DOI: 10.1016/j.radonc.2018.03.033] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 03/02/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
|
17
|
Yang SM, Chen LW, Wang HJ, Chen LR, Lor KL, Chen YC, Lin MW, Hsieh MS, Chen JS, Chang YC, Chen CM. Extraction of radiomic values from lung adenocarcinoma with near-pure subtypes in the International Association for the Study of Lung Cancer/the American Thoracic Society/the European Respiratory Society (IASLC/ATS/ERS) classification. Lung Cancer 2018; 119:56-63. [DOI: 10.1016/j.lungcan.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
|
18
|
Chaddad A, Daniel P, Desrosiers C, Toews M, Abdulkarim B. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time. IEEE J Biomed Health Inform 2018; 23:795-804. [PMID: 29993848 DOI: 10.1109/jbhi.2018.2825027] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper presents a novel set of image texture features generalizing standard grey-level co-occurrence matrices (GLCM) to multimodal image data through joint intensity matrices (JIMs). These are used to predict the survival of glioblastoma multiforme (GBM) patients from multimodal MRI data. The scans of 73 GBM patients from the Cancer Imaging Archive are used in our study. Necrosis, active tumor, and edema/invasion subregions of GBM phenotypes are segmented using the coregistration of contrast-enhanced T1-weighted (CE-T1) images and its corresponding fluid-attenuated inversion recovery (FLAIR) images. Texture features are then computed from the JIM of these GBM subregions and a random forest model is employed to classify patients into short or long survival groups. Our survival analysis identified JIM features in necrotic (e.g., entropy and inverse-variance) and edema (e.g., entropy and contrast) subregions that are moderately correlated with survival time (i.e., Spearman rank correlation of 0.35). Moreover, nine features were found to be associated with GBM survival with a Hazard-ratio range of 0.38-2.1 and a significance level of p < 0.05 following Holm-Bonferroni correction. These features also led to the highest accuracy in a univariate analysis for predicting the survival group of patients, with AUC values in the range of 68-70%. Considering multiple features for this task, JIM features led to significantly higher AUC values than those based on standard GLCMs and gene expression. Furthermore, an AUC of 77.56% with p = 0.003 was achieved when combining JIM, GLCM, and gene expression features into a single radiogenomic signature. In summary, our study demonstrated the usefulness of modeling the joint intensity characteristics of CE-T1 and FLAIR images for predicting the prognosis of patients with GBM.
Collapse
|