1
|
AL Shizawi N, AL Jabri Z, Khan F, Sami H, AL Siyabi T, AL Muharrmi Z, Sirasanagandla SR, Rizvi M. Mapping Antimicrobial Resistance in Escherichia coli and Klebsiella pneumoniae from Complicated Urinary Tract Infections in Oman: Phenotypic and Genotypic Insights. Diagnostics (Basel) 2025; 15:1062. [PMID: 40361883 PMCID: PMC12071653 DOI: 10.3390/diagnostics15091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Mapping the local etiology and susceptibility of common pathogens causing complicated urinary tract infection (cUTI) is important for promoting evidence-based antimicrobial prescribing. Evaluating the prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase (AmpC), and carbapenemase-producing Enterobacterales (CPEs) is equally important as it informs treatment guidelines and empiric management. Whole genome sequencing (WGS) enhances antimicrobial resistance (AMR) surveillance by complementing phenotypic antimicrobial susceptibility testing, offering deeper insights into resistance mechanisms, transmissions, and evolutions. Integrating it into routine AMR monitoring can significantly improve global efforts to combat antimicrobial resistance. Methods: Antimicrobial susceptibility profiles of isolates from cUTI were collected from patients presenting with Sultan Qaboos University Hospital, Muscat and Suhar Hospital, Suhar, Oman. Automated systems as well as manual methods were used for detection of ESBL, AmpC, and CPE. ESBLs, AmpC β-lactamases, and CPEs were further detected by manual methods: double-disk synergy test for ESBL; disk approximation assay and D69C AmpC detection set for AmpC, and mCIM and KPC/IMP/NDM/VIM/OXA-48 Combo test kit for CPE. WGS was carried out in 11 FOX-resistant E. coli and (22 carbapenem-resistant K. pneumoniae) isolates with varying susceptibilities to identify circulating clades, AMR genes, and plasmids. Bioinformatic analysis was performed using online tools. Results: The susceptibility patterns of E. coli from cUTI were as follows: nitrofurantoin (96%), fosfomycin (100%), fluoroquinolones (44%), aminoglycosides (93%), piperacillin-tazobactam (95%), and carbapenems (98%). In comparison, susceptibility rates of K. pneumoniae were far lower: nitrofurantoin (38%), fosfomycin (89%), aminoglycosides (82%), piperacillin-tazobactam (72%), and carbapenems (83%). K. pneumoniae, however, was more susceptible to fluoroquinolones at 47% in comparison to E. coli. The prevalence of ESBL among E. coli and K. pneumoniae was 37.2% and CRE was 6.2% while the estimated prevalence of AmpC was 5.4%. It was observed that E. coli was the predominant ESBL and AmpC producer, while K. pneumoniae was the major carbapenem-resistant Enterobacterales (CREs) producer. No predominant multi-locus sequence typing (MLST) lineage was observed in AmpC-producing E. coli with nine E. coli MLST lineages being identified from eleven isolates: ST-10, ST-69, ST-77, ST-131, ST-156, ST-167, ST-361, ST-1125, and ST-2520. On the other hand, a less diverse MLST spectrum (ST-2096, ST-231, ST-147, ST-1770, and ST-111) was observed in the CRE K. pneumoniae. Among the five MLST lineages, ST-2096 (twelve isolates) and ST-147 (seven isolates) predominated. WGS revealed that DHA-1 was the predominant plasmid-mediated AmpC gene in E. coli, while OXA-232 and NDM-5 were the most common carbapenemase genes in K. pneumoniae. All E. coli DHA-1-positive isolates co-harbored the quinolone resistance gene qnrB4 and the sulfonamide resistance gene sul1 while no aminoglycoside resistance genes were detected. The majority of CPE CRE K. pneumoniae carried other β-lactamase genes, such as blaCTX-M-15, blaSHV, and blaTEM; all co-harbored the quinolone resistance gene OqxAB; and 77% carried the aminoglycoside resistance gene armA. Conclusions: Our results suggest that fosfomycin is an excellent empiric choice for treating complicated cystitis caused by both E. coli and K. pneumoniae, while nitrofurantoin is an appropriate choice for E. coli cystitis but not for K. pneumoniae. Aminoglycosides and piperacillin-tazobactam are excellent intravenous alternatives that spare carbapenems. DHA-1 was the predominant AmpC in E. coli, while OXA-232 and NDM-5 were the predominant carbapenemases in K. pneumoniae. In AmpC-producing E. coli, no MLST predominated, suggesting a significant flux in E. coli with lack of stable clades in this region. In contrast, ST-2096 and ST-147 predominated in CRE Klebsiella pneumoniae, suggesting a stable circulation of these in Oman. WGS profiling provides a deeper understanding of the genetic basis of resistance and enhances surveillance and offers comprehensive insights into pathogen evolution and transmission patterns.
Collapse
Affiliation(s)
- Nawal AL Shizawi
- Department of Microbiology, Suhar Hospital, Ministry of Health, Sohar 100, Oman;
| | - Zaaima AL Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Fatima Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202001, India; (F.K.); (H.S.)
| | - Hiba Sami
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202001, India; (F.K.); (H.S.)
| | - Turkiya AL Siyabi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Zakariya AL Muharrmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| |
Collapse
|
2
|
Ebrahimi MT, Halimi S, Yavari-Bafghi M, Beigverdi R, Rahdar HA, Emaneini M, Jabalameli F. Prevalence and characteristics of ST131-O16 and ST131-O25b clones among extended-spectrum β-lactamase-producing Escherichia coli isolates causing bloodstream infection in Iran. Mol Biol Rep 2025; 52:206. [PMID: 39907737 DOI: 10.1007/s11033-025-10310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND The multidrug-resistant clone identified as Escherichia coli sequence type 131 (E. coli ST131) has spread worldwide. The current study is one of the first comprehensive investigations to ascertain the prevalence of ST131 and molecularly characterize the ST131-O25b and ST131-O16 subgroups causing bloodstream infections in Iran. METHODS AND RESULTS To this end, 119 consecutive, non-repetitive E. coli clinical strains were isolated from blood samples of patients with septicemia in different hospital wards for one year in Tehran. The isolates were provided by the laboratories of tertiary hospitals affiliated with Tehran University of Medical Sciences. The disk diffusion method was used to investigate the sensitivity of bacteria to antibiotics. All phylogroup B2 isolates were screened for E. coli ST131 status using a triplex PCR assay that combines the identification of ST131-O25b and -O16 clades. The seven putative virulence factor genes (kpmstII, fimH, afa A, iroN, Sat, ibeA, and ompT) and resistance genes (blaCTX-M-15, blaOXA-48, and blaCMY) were detected by PCR in E. coli ST131 isolates. CONCLUSIONS The highest incidence of antibiotic resistance among 74/119 (62.18%) extended-spectrum β-lactamases-producing E. coli isolates was observed, respectively, against Nalidixic acid (82%), and Aztreonam (75%), followed by Ciprofloxacin (70%). Twenty out of 74 ESBL-producing E. coli isolates were found to be ST131 (27%), with 13 (65%) ST131-O25b and 7 (35%) ST131-O16 clades, respectively. The ST131-O16 isolates had a higher prevalence of resistance to Ceftriaxone, Amikacin, Aztreonam, and Cefepime than the -O25b ones. Concerning virulence capacity, our findings demonstrated that kpmstII, fimH, and ompT genes were found in 85%, 65%, and 30% of ST131 isolates, respectively. Our results reinforce the surveillance of E. coli ST131 clone dissemination as a major drug-resistant pathogen and an important new public health threat in Iran. Accumulation of multiple virulence factors, ESBL carriage, and identified antimicrobial resistance patterns of ST131-O25b and ST131-O16 clones indicate a necessity to develop strategies to control the spread of these isolates in both community and hospital settings.
Collapse
Affiliation(s)
- Mohammad Taha Ebrahimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yavari-Bafghi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Khadka C, Shyaula M, Syangtan G, Bista S, Tuladhar R, Singh A, Joshi DR, Pokhrel LR, Dawadi P. Extended-spectrum β-lactamases producing Enterobacteriaceae (ESBL-PE) prevalence in Nepal: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166164. [PMID: 37572913 DOI: 10.1016/j.scitotenv.2023.166164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
An alarming increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has threatened the treatment and management of bacterial infections. This systematic review and meta-analysis aimed to provide a quantitative estimate of the prevalence of ESBL among the members of the Enterobacteriaceae family by analyzing the community-based and clinical studies published between 2011 and 2021 from Nepal and determine if ESBL-PE correlates with multidrug resistance (MDR). The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for systematic review and meta-analysis and the articles' quality was assessed using the Newcastle-Ottawa scale. Of the 2529 articles screened, 65 articles were systematically reviewed, data extracted, and included in in-depth meta-analysis. The overall pooled prevalence of ESBL-producers in Enterobacteriaceae was 29 % (95 % CI: 26-32 %) with high heterogeneity (I2 = 96 %, p < 0.001). Escherichia coli was the predominant ESBL-producing member of the Enterobacteriaceae family, followed by Citrobacter spp. and Klebsiella spp. The prevalence of ESBL-PE increased from 18.7 % in 2011 to 29.5 % in 2021. A strong positive correlation (r = 0.98) was observed between ESBL production and MDR in Enterobacteriaceae. ESBL-PE isolates showed high resistance to ampicillin, cephalosporins, and amoxicillin-clavulanic acid, and blaCTX-M type was the most reported gene variant among ESBL-PE. In conclusion, this study demonstrated an increased prevalence of ESBL-PE in Nepal over the last decade, and such isolates showed a high level of MDR against the β-lactams and non-β-lactam antibiotics. Tackling the rising antibiotic resistance (AR) and MDR in ESBL-PE would require concerted efforts from all stakeholders to institute effective infection control programs in the community and clinical settings.
Collapse
Affiliation(s)
- Christina Khadka
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Gopiram Syangtan
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Shrijana Bista
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
5
|
Fonseca-MartÃnez SA, MartÃnez-Vega RA, Farfán-GarcÃa AE, González Rugeles CI, Criado-Guerrero LY. Association Between Uropathogenic Escherichia coli Virulence Genes and Severity of Infection and Resistance to Antibiotics. Infect Drug Resist 2023; 16:3707-3718. [PMID: 37333681 PMCID: PMC10275372 DOI: 10.2147/idr.s391378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose Urinary tract infection (UTI) is the most frequent bacterial infection. Some uropathogenic Escherichia coli (UPEC) genes have been associated with disease severity and antibiotic resistance. The aim was to determine the association of nine UPEC virulence genes with UTI severity and antibiotic resistance of strains collected from adults with community-acquired UTI. Patients and Methods A case-control study (1:3) (38 urosepsis/pyelonephritis and 114 cystitis/urethritis) was conducted. The fimH, sfa/foc, cvaC, hlyA, iroN, fyuA, ireA, iutA, and aer (the last five are siderophore genes) virulence genes were determined by PCR. The information of antibiotic susceptibility pattern of the strains was collected from medical records. This pattern was determined using an automated system for antimicrobial susceptibility testing. Multidrug-resistant (MDR) was defined as resistance to three or more antibiotic families. Results fimH was the most frequently detected virulence gene (94.7%), and sfa/foc was the least frequently detected (9.2%); 55.3% (83/150) of the strains were MDR. The evaluated genes were not associated with UTI severity. Associations were found between the presence of hlyA and carbapenem resistance (Odds ratio [OR] = 7.58, 95% confidence interval [CI], 1.50-35.42), iutA and fluoroquinolone resistance (OR = 2.35, 95% CI, 1.15-4.84, and aer (OR = 2.8, 95% CI, 1.20-6.48) and iutA (OR = 2.95, 95% CI, 1.33-6.69) with penicillin resistance. In addition, iutA was the only gene associated with MDR (OR = 2.09, 95% CI,1.03-4.26). Conclusion There was no association among virulence genes and UTI severity. Three of the five iron uptake genes were associated with resistance to at least one antibiotic family. Regarding the other four non-siderophore genes, only hlyA was associated with antibiotic resistance to carbapenems. It is essential to continue studying bacterial genetic characteristics that cause the generation of pathogenic and multidrug-resistant phenotypes of UPEC strains.
Collapse
Affiliation(s)
| | | | - Ana Elvira Farfán-GarcÃa
- Programa de BacteriologÃa y Laboratorio ClÃnico, Universidad de Santander, Bucaramanga, Santander, Colombia
| | | | | |
Collapse
|
6
|
Sabour S, Teimourpour A, Mohammadshahi J, Peeridogaheh H, Teimourpour R, Azimi T, Hosseinali Z. Molecular detection and characterization of Shigella spp. harboring extended-spectrum β-lactamase genes in children with diarrhea in northwest Iran. Mol Cell Pediatr 2022; 9:19. [PMID: 36480097 PMCID: PMC9732178 DOI: 10.1186/s40348-022-00152-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Shigellosis is one of the acute bowel infections and remains a serious public health problem in resource-poor countries. The present study aimed to survey the distribution of extended-spectrum β-lactamase (ESBL)-producing Shigella strains isolated from patients with diarrhea in northwest Iran. In the present cross-sectional study, from January 2019 to December 2020, 1280 fecal samples were collected from children with diarrhea in Ardabil, Iran. Multiplex PCR assay was applied for the presence of ipaH, invC, wbgZ, rfpB, and rfc genes to detect Shigella spp., Shigella sonnei, Shigella dysenteriae, Shigella flexneri, and Shigella boydii, respectively. Phenotypic detection of ESBL-producing isolates was carried out using the Double Disc Test (DDT). The frequency of main ESBL encoding genes including blaCTX-M, blaSHV, and blaTEM was detected using multiplex PCR. The genetic similarity of S. sonnei isolates was determined using ERIC PCR. A total of 49 Shigella isolates (3.8%; 49/1280) including 42 (85.7%) S. sonnei, 5 (10.2%) S. flexneri, and 2 (4%) S. dysenteriae were identified. S. boydii was not detected in any fecal samples. ESBLs were produced by 10.2% of Shigella spp. including 3 S. sonnei, 1 S. flexneri, and 1 S. dysenteriae. The ESBL encoding genes include blaCTX-M and blaTEM found in 65.3% and 61.2% of isolates, respectively. blaSHV gene was not detected in any isolates. The ERIC-PCR profiles allowed the differentiation of 42 S. sonnei strains into 6 clusters. Our study revealed a high frequency of ESBL-encoding genes among Shigella spp. in northwest Iran. The high prevalence of S. sonnei harboring ESBL genes, in the present work, is the main challenge for dysentery treatment, and this concern justifies the need for effective and regular monitoring of antibiotic usage among patients.
Collapse
Affiliation(s)
- Sahar Sabour
- grid.411230.50000 0000 9296 6873Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ,grid.411426.40000 0004 0611 7226Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Amir Teimourpour
- grid.418552.fBlood Transfusion Research Center, High Institute for Research and Education, Tehran, Iran
| | - Jafar Mohammadshahi
- grid.411426.40000 0004 0611 7226Department of Infectious Diseases, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hadi Peeridogaheh
- grid.411426.40000 0004 0611 7226Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran ,grid.411426.40000 0004 0611 7226Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roghayeh Teimourpour
- grid.411426.40000 0004 0611 7226Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran ,grid.411426.40000 0004 0611 7226Genomics Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Taher Azimi
- grid.412571.40000 0000 8819 4698Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Zahra Hosseinali
- grid.411426.40000 0004 0611 7226Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| |
Collapse
|
7
|
Prevalence of Extended-Spectrum β-Lactamase-Resistant Genes in Escherichia coli Isolates from Central China during 2016-2019. Animals (Basel) 2022; 12:ani12223191. [PMID: 36428418 PMCID: PMC9686871 DOI: 10.3390/ani12223191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The emergence and dissemination of Escherichia coli (E. coli) strains that produce extended-spectrum beta-lactamases (ESBLs) represents a major public health threat. The present study was designed to evaluate the prevalence and characteristics of ESBL-producing Escherichia coli isolates from chickens in central China during 2016-2019. A total of 407 E. coli strains isolated from 581 chicken swabs were identified conventionally and analyzed for various cephalosporin susceptibility by disk-diffusion assay. ESBL-producing strains were screened using the double=disk synergy test and ESBL-encoding genes were carried out by PCR/sequencing. A total of 402 E. coli isolates exhibited strong resistance to first- to fourth-generation cephalosporins and monobactam antibiotics, especially cefazolin (60.69%), cefuroxime (54.05%), cefepime (35.14%), ceftriaxone (54.30%), and aztreonam (40.29%). Piperacillin/tazobactam (1.72%) was the most effective drug against the strains, but the resistance rates increased each year. Among the isolates, 262 were identified as ESBL producers and the isolation rates for the ESBL producers increased from 63.37% to 67.35% over the four years. CTX-M (97.33%) was the most prevalent type, followed by TEM (76.72%) and SHV (3.05%). The most common ESBL genotype combination was blaTEM + blaCTX-M (74.46%), in which the frequency of carriers increased steadily, followed by blaCTX-M + blaSHV (3.05%). In addition, the most predominant specific CTX-M subtypes were CTX-M-55 (48.47%) and CTX-M-1 (17.94%), followed by CTX-M-14 (11.01%), CTX-M-15 (8.02%), CTX-M-9 (6.11%), CTX-M-65 (4.58%), and CTX-M-3 (1.15%). Moreover, a novel multiplex qPCR assay was developed to detect blaCTX-M, blaTEM, and blaSHV, with limits of detection of 2.06 × 101 copies/μL, 1.10 × 101 copies/μL, and 1.86 × 101 copies/μL, respectively, and no cross-reactivity with other ESBL genes and avian pathogens. The assays exhibited 100% sensitivity and specificities of 85%, 100%, and 100% for blaCTX-M, blaTEM, and blaSHV, respectively. In conclusion, our findings indicated that ESBL-producing E.coli strains isolated from chickens in central China were highly resistant to cephalosporins and frequently harbored diversity in ESBL-encoding genes. These isolates can pose a significant public health risk. The novel multiplex qPCR method developed in this study may be a useful tool for molecular epidemiology and surveillance studies of ESBL genes.
Collapse
|