1
|
Akhtar MF, Umar M, Chai W, Li L, Ahmad E, Wang C. Effect of Inhibin Immunization on Reproductive Hormones and Testicular Morphology of Dezhou Donkeys During the Non-Breeding Season. Animals (Basel) 2025; 15:813. [PMID: 40150342 PMCID: PMC11939279 DOI: 10.3390/ani15060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
The present study was designed to investigate the potential role of inhibin immunization on plasma hormone concentration and testicular histoarchitecture of Dezhou donkeys in the nonbreeding season (November-February). For this purpose, adult Dezhou donkeys (n = 30) were equally divided into groups A, B, and C. Group A was actively immunized with 3 mg inhibin, group B with (1.5 mg), and group C was immunized with Bovine serum albumin (BSA) and served as a control. All animals in groups A and B were given a primary dose of inhibin (INH) antigen, i.e., 3 mg and 1.5 mg on day 1, followed by a booster dose on the 23rd day of the experiment. Blood samples were collected on the 21st, 28th, 34th, and 40th days of the experiment. Primary and booster INH immunization (3 mg and 1.5 mg) slightly elevated the plasma hormone concentrations of FSH, LH, AMH, and Activin A. The number of spermatogonia was significantly higher in group A as compared to group C on the 28th day of the experiment. Inhibin immunization also caused apoptosis in testicular histoarchitecture. In conclusion, Inhibin immunization can potentially improve the reproductive efficiency of Dezhou donkeys in a nonbreeding season by elevating plasma hormone concentrations of FSH, LH, AMH, and Activin A.
Collapse
Affiliation(s)
- Muhammad Faheem Akhtar
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Muhammad Umar
- Department of Animal Reproduction, Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Science, Uthal 90150, Pakistan
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Ejaz Ahmad
- Department of Clinical Sciences, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Chen Q, Sun W, Jin L, Zhou Y, Li F, Ge C. Overexpression of Kdm6b induces testicular differentiation in a temperature-dependent sex determination system. Zool Res 2024; 45:1108-1115. [PMID: 39245653 PMCID: PMC11491778 DOI: 10.24272/j.issn.2095-8137.2024.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
In reptiles, such as the red-eared slider turtle ( Trachemys scripta elegans), gonadal sex determination is highly dependent on the environmental temperature during embryonic stages. This complex process, which leads to differentiation into either testes or ovaries, is governed by the finely tuned expression of upstream genes, notably the testis-promoting gene Dmrt1 and the ovary-promoting gene Foxl2. Recent studies have identified epigenetic regulation as a crucial factor in testis development, with the H3K27me3 demethylase KDM6B being essential for Dmrt1 expression in T. s. elegans. However, whether KDM6B alone can induce testicular differentiation remains unclear. In this study, we found that overexpression of Kdm6b in T. s. elegans embryos induced the male development pathway, accompanied by a rapid increase in the gonadal expression of Dmrt1 at 31°C, a temperature typically resulting in female development. Notably, this sex reversal could be entirely rescued by Dmrt1 knockdown. These findings demonstrate that Kdm6b is sufficient for commitment to the male pathway, underscoring its role as a critical epigenetic regulator in the sex determination of the red-eared slider turtle.
Collapse
Affiliation(s)
- Qiran Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Lin Jin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Yingjie Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Fang Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China. E-mail:
| |
Collapse
|
3
|
Li Y, Liu Y, Zheng J, Wu B, Cui X, Xu W, Zhu C, Qiu Q, Wang K. A chromosome-level genome assembly of the pig-nosed turtle (Carettochelys insculpta). Sci Data 2024; 11:311. [PMID: 38521795 PMCID: PMC10960847 DOI: 10.1038/s41597-024-03157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
The pig-nosed turtle (Carettochelys insculpta) represents the only extant species within the Carettochelyidae family, is a unique Trionychia member fully adapted to aquatic life and currently facing endangerment. To enhance our understanding of this species and contribute to its conservation efforts, we employed high-fidelity (HiFi) and Hi-C sequencing technology to generate its genome assembly at the chromosome level. The assembly result spans 2.18 Gb, with a contig N50 of 126 Mb, encompassing 34 chromosomes that account for 99.6% of the genome. The assembly has a BUSCO score above 95% with different databases and strong collinearity with Yangtze giant softshell turtles (Rafetus swinhoei), indicating its completeness and continuity. A total of 19,175 genes and 46.86% repetitive sequences were annotated. The availability of this chromosome-scale genome represents a valuable resource for the pig-nosed turtle, providing insights into its aquatic adaptation and serving as a foundation for future turtle research.
Collapse
Affiliation(s)
- Ye Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Baosheng Wu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Xinxin Cui
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
4
|
Huang X, Zhao R, Xu Z, Fu C, Xie L, Li S, Wang X, Zhang Y. gjSOX9 Cloning, Expression, and Comparison with gjSOXs Family Members in Gekko japonicus. Curr Issues Mol Biol 2023; 45:9328-9341. [PMID: 37998761 PMCID: PMC10670703 DOI: 10.3390/cimb45110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
SOX9 plays a crucial role in the male reproductive system, brain, and kidneys. In this study, we firstly analyzed the complete cDNA sequence and expression patterns for SOX9 from Gekko japonicus SOX9 (gjSOX9), carried out bioinformatic analyses of physiochemical properties, structure, and phylogenetic evolution, and compared these with other members of the gjSOX family. The results indicate that gjSOX9 cDNA comprises 1895 bp with a 1482 bp ORF encoding 494aa. gjSOX9 was not only expressed in various adult tissues but also exhibited a special spatiotemporal expression pattern in gonad tissues. gjSOX9 was predicted to be a hydrophilic nucleoprotein with a characteristic HMG-Box harboring a newly identified unique sequence, "YKYQPRRR", only present in SOXE members. Among the 20 SOX9 orthologs, gjSOX9 shares the closest genetic relationships with Eublepharis macularius SOX9, Sphacrodactylus townsendi SOX9, and Hemicordylus capensis SOX9. gjSOX9 and gjSOX10 possessed identical physicochemical properties and subcellular locations and were tightly clustered with gjSOX8 in the SOXE group. Sixteen gjSOX family members were divided into six groups: SOXB, C, D, E, F, and H with gjSOX8, 9, and 10 in SOXE among 150 SOX homologs. Collectively, the available data in this study not only facilitate a deep exploration of the functions and molecular regulation mechanisms of the gjSOX9 and gjSOX families in G. japonicus but also contribute to basic research regarding the origin and evolution of SOX9 homologs or even sex-determination mode in reptiles.
Collapse
Affiliation(s)
- Xingze Huang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Ruonan Zhao
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Zhiwang Xu
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Chuyan Fu
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Lei Xie
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Shuran Li
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Xiaofeng Wang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Yongpu Zhang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| |
Collapse
|
5
|
Yao HHC, Rodriguez KF. From Enrico Sertoli to freemartinism: the many phases of the master testis-determining cell†. Biol Reprod 2023; 108:866-870. [PMID: 36951956 PMCID: PMC10266947 DOI: 10.1093/biolre/ioad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 03/24/2023] Open
Abstract
Sertoli cells, first identified in the adult testis by Enrico Sertoli in the mid-nineteenth century, are known for their role in fostering male germ cell differentiation and production of mature sperm. It was not until the late twentieth century with the discovery of the testis-determining gene SRY that Sertoli cells' new function as the master regulator of testis formation and maleness was unveiled. Fetal Sertoli cells facilitate the establishment of seminiferous cords, induce appearance of androgen-producing Leydig cells, and cause regression of the female reproductive tracts. Originally thought be a terminally differentiated cell type, adult Sertoli cells, at least in the mouse, retain their plasticity and ability to transdifferentiate into the ovarian counterpart, granulosa cells. In this review, we capture the many phases of Sertoli cell differentiation from their fate specification in fetal life to fate maintenance in adulthood. We also introduce the discovery of a new phase of fetal Sertoli cell differentiation via autocrine/paracrine factors with the freemartin characteristics. There remains much to learn about this intriguing cell type that lay the foundation for the maleness.
Collapse
Affiliation(s)
- Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Liu BZ, Cong JJ, Su WY, Hao ZL, Sun ZH, Chang YQ. Identification and functional analysis of Dmrt1 gene and the SoxE gene in the sexual development of sea cucumber, Apostichopus japonicus. Front Genet 2023; 14:1097825. [PMID: 36741310 PMCID: PMC9894652 DOI: 10.3389/fgene.2023.1097825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Members of the Doublesex and Mab-3-related transcription factor (Dmrt) gene family handle various vital functions in several biological processes, including sex determination/differentiation and gonad development. Dmrt1 and Sox9 (SoxE in invertebrates) exhibit a very conserved interaction function during testis formation in vertebrates. However, the dynamic expression pattern and functional roles of the Dmrt gene family and SoxE have not yet been identified in any echinoderm species. Herein, five members of the Dmrt gene family (Dmrt1, 2, 3a, 3b and 5) and the ancestor SoxE gene were identified from the genome of Apostichopus japonicus. Expression studies of Dmrt family genes and SoxE in different tissues of adult males and females revealed different expression patterns of each gene. Transcription of Dmrt2, Dmrt3a and Dmrt3b was higher expressed in the tube feet and coelomocytes instead of in gonadal tissues. The expression of Dmrt1 was found to be sustained throughout spermatogenesis. Knocking-down of Dmrt1 by means of RNA interference (RNAi) led to the downregulation of SoxE and upregulation of the ovarian regulator foxl2 in the testes. This indicates that Dmrt1 may be a positive regulator of SoxE and may play a role in the development of the testes in the sea cucumber. The expression level of SoxE was higher in the ovaries than in the testes, and knocking down of SoxE by RNAi reduced SoxE and Dmrt1 expression but conversely increased the expression of foxl2 in the testes. In summary, this study indicates that Dmrt1 and SoxE are indispensable for testicular differentiation, and SoxE might play a functional role during ovary differentiation in the sea cucumber.
Collapse
|
7
|
Ma X, Liu F, Chen Q, Sun W, Shen J, Wu K, Zheng Z, Huang J, Chen J, Qian G, Ge C. Foxl2 is required for the initiation of the female pathway in a temperature-dependent sex determination system in Trachemys scripta. Development 2022; 149:275948. [DOI: 10.1242/dev.200863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
KDM6B-mediated epigenetic modification of the testicular regulator Dmrt1 has previously been identified as the primary switch of the male pathway in a temperature-dependent sex-determination (TSD) system; however, the molecular network of the female pathway has not yet been established. Here, we have functionally characterized for the first time an upstream regulator of the female pathway, the forkhead transcription factor FOXL2, in Trachemys scripta, a turtle species with a TSD system. FOXL2 exhibited temperature-dependent female-specific expression patterns before the onset of gonadal differentiation and was preferentially localized in ovarian somatic cells. Foxl2 responded rapidly to temperature shifts and estrogen. Importantly, forced expression of Foxl2 at the male-producing temperature led to male-to-female sex reversal, as evidenced by the formation of an ovary-like structure, and upregulation of the ovarian regulators Cyp19a1 and R-spondin1. Additionally, knockdown of Foxl2 caused masculinization at the female-producing temperature, which was confirmed by loss of the female phenotype, development of seminiferous tubules, and elevated expression of Dmrt1 and Sox9. Collectively, we demonstrate that Foxl2 expression is necessary and sufficient to drive ovarian determination in T. scripta, suggesting a crucial role of Foxl2 in female sex determination in the TSD system.
Collapse
Affiliation(s)
- Xiaohui Ma
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
- College of Fisheries and Life Sciences, Shanghai Ocean University 2 , Shanghai 201306 , China
| | - Fang Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
- College of Fisheries and Life Sciences, Shanghai Ocean University 2 , Shanghai 201306 , China
| | - Qiran Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
- College of Marine Life Sciences, Ocean University of China 3 MOE Key Laboratory of Marine Genetics and Breeding , , Qingdao 266003 , China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Jiadong Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Kaiyue Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Ziyan Zheng
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Jiaqi Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Jiawen Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| |
Collapse
|
8
|
Zhu J, Lei L, Chen C, Wang Y, Liu X, Geng L, Li R, Chen H, Hong X, Yu L, Wei C, Li W, Zhu X. Whole-Transcriptome Analysis Identifies Gender Dimorphic Expressions of Mrnas and Non-Coding Rnas in Chinese Soft-Shell Turtle ( Pelodiscus sinensis). BIOLOGY 2022; 11:biology11060834. [PMID: 35741355 PMCID: PMC9219891 DOI: 10.3390/biology11060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 04/14/2023]
Abstract
In aquaculture, the Chinese soft-shelled turtle (Pelodiscus sinensis) is an economically important species with remarkable gender dimorphism in its growth patterns. However, the underlying molecular mechanisms of this phenomenon have not been elucidated well. Here, we conducted a whole-transcriptome analysis of the female and male gonads of P. sinensis. Overall, 7833 DE mRNAs, 619 DE lncRNAs, 231 DE circRNAs, and 520 DE miRNAs were identified. Some "star genes" associated with sex differentiation containing dmrt1, sox9, and foxl2 were identified. Additionally, some potential genes linked to sex differentiation, such as bmp2, ran, and sox3, were also isolated in P. sinensis. Functional analysis showed that the DE miRNAs and DE ncRNAs were enriched in the pathways related to sex differentiation, including ovarian steroidogenesis, the hippo signaling pathway, and the calcium signaling pathway. Remarkably, a lncRNA/circRNA-miRNA-mRNA interaction network was constructed, containing the key genes associated with sex differentiation, including fgf9, foxl3, and dmrta2. Collectively, we constructed a gender dimorphism profile of the female and male gonads of P. sinensis, profoundly contributing to the exploration of the major genes and potential ncRNAs involved in the sex differentiation of P. sinensis. More importantly, we highlighted the potential functions of ncRNAs for gene regulation during sex differentiation in P. sinensis as well as in other turtles.
Collapse
Affiliation(s)
- Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Luo Lei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Lulu Geng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ruiyang Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Haigang Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Chengqing Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Correspondence: (W.L.); (X.Z.)
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence: (W.L.); (X.Z.)
| |
Collapse
|
9
|
Bellidifolin Inhibits SRY-Related High Mobility Group-Box Gene 9 to Block TGF-β Signalling Activation to Ameliorate Myocardial Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6841276. [PMID: 35586685 PMCID: PMC9110156 DOI: 10.1155/2022/6841276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
Myocardial fibrosis is the main morphological change of ventricular remodelling caused by cardiovascular diseases, mainly manifested due to the excessive production of collagen proteins. SRY-related high mobility group-box gene 9 (SOX9) is a new target regulating myocardial fibrosis. Bellidifolin (BEL), the active component of G. acuta, can prevent heart damage. However, it is unclear whether BEL can regulate SOX9 to alleviate myocardial fibrosis. The mice were subjected to isoproterenol (ISO) to establish myocardial fibrosis, and human myocardial fibroblasts (HCFs) were activated by TGF-β1 in the present study. The pathological changes of cardiac tissue were observed by HE staining. Masson staining was applied to reveal the collagen deposition in the heart. The measurement for expression of fibrosis-related proteins, SOX9, and TGF-β1 signalling molecules adopted Western blot and immunohistochemistry. The effects of BEL on HCFs, activity were detected by CCK-8. The result showed that BEL did not affect cell viability. And, the data indicated that BEL inhibited the elevations in α-SMA, Collagen I, and Collagen III by decreasing SOX9 expression. Additionally, SOX9 suppression by siRNA downregulated the TGF-β1 expression and prevented Smad3 phosphorylation, as supported by reducing the expression of α-SMA, Collagen I, and Collagen III. In vivo study verified that BEL ameliorated myocardial fibrosis by inhibiting SOX9. Therefore, BEL inhibited SOX9 to block TGF-β1 signalling activation to ameliorate myocardial fibrosis.
Collapse
|