1
|
Ge X, Wekselblatt JB, Elmore S, Wang B, Wang T, Dai R, Zhang T, Dave H, Ghaderi M, Anilkumar AR, Wang B, Sirsi SR, Ahn JM, Shapiro MG, Oka Y, Lois C, Qin Z. In Vivo Cytosolic Delivery of Biomolecules into Neurons for Super-Resolution Imaging and Genome Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501033. [PMID: 40285608 DOI: 10.1002/advs.202501033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Efficient delivery of biomolecules into neurons has significant impacts on therapeutic applications in the central nervous system (CNS) and fundamental neuroscience research. Existing viral and non-viral delivery methods often suffer from inefficient intracellular access due to the endocytic pathway. Here, a neuron-targeting and direct cytosolic delivery platform is discovered by using a 15-amino-acid peptide, termed the N1 peptide, which enables neuron-specific targeting and cytosolic delivery of functional biomolecules. The N1 peptide initially binds hyaluronan in the extracellular matrix and subsequently passes the membrane of neurons without being trapped into endosome. This mechanism facilitates the efficient delivery of cell-impermeable and photo-stable fluorescent dye for super-resolution imaging of dendritic spines, and functional proteins, such as Cre recombinase, for site-specific genome modification. Importantly, the N1 peptide exhibits robust neuronal specificity across diverse species, including mice, rats, tree shrews, and zebra finches. Its targeting capability is further demonstrated through various administration routes, including intraparenchymal, intrathecal, and intravenous (i.v.) injections after blood-brain barrier (BBB) opening with focused ultrasound (FUS). These findings establish the N1 peptide as a versatile and functional platform with significant potential for bioimaging and advanced therapeutic applications.
Collapse
Affiliation(s)
- Xiaoqian Ge
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Joseph B Wekselblatt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Opthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Scott Elmore
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Bo Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Renjinming Dai
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Harsh Dave
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Mohammadaref Ghaderi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Athul Raj Anilkumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Bill Wang
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Shashank R Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA, 91125, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Zhenpeng Qin
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| |
Collapse
|
2
|
Wang Y, Su F, Cong R, Liu M, Shan K, Li X, Zhu D, Wei Y, Dai J, Zhang C, Tian Y. High-throughput markerless pose estimation and home-cage activity analysis of tree shrew using deep learning. Animal Model Exp Med 2025. [PMID: 39846430 DOI: 10.1002/ame2.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Quantifying the rich home-cage activities of tree shrews provides a reliable basis for understanding their daily routines and building disease models. However, due to the lack of effective behavioral methods, most efforts on tree shrew behavior are limited to simple measures, resulting in the loss of much behavioral information. METHODS To address this issue, we present a deep learning (DL) approach to achieve markerless pose estimation and recognize multiple spontaneous behaviors of tree shrews, including drinking, eating, resting, and staying in the dark house, etc. RESULTS: This high-throughput approach can monitor the home-cage activities of 16 tree shrews simultaneously over an extended period. Additionally, we demonstrated an innovative system with reliable apparatus, paradigms, and analysis methods for investigating food grasping behavior. The median duration for each bout of grasping was 0.20 s. CONCLUSION This study provides an efficient tool for quantifying and understand tree shrews' natural behaviors.
Collapse
Affiliation(s)
- Yangzhen Wang
- Department of Automation, Tsinghua University, Beijing, China
| | - Feng Su
- College of Future Technology, Peking University, Beijing, China
| | - Rixu Cong
- Ministry of Education, Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Mengna Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Kaichen Shan
- Department of Automation, Tsinghua University, Beijing, China
| | - Xiaying Li
- Laboratory Animal Center, School of Life Sciences, Peking University, Beijing, China
| | - Desheng Zhu
- Laboratory Animal Center, School of Life Sciences, Peking University, Beijing, China
| | - Yusheng Wei
- Laboratory Animal Center, School of Life Sciences, Peking University, Beijing, China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yonglu Tian
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
3
|
Liu Y, McDaniel JA, Chen C, Yang L, Kipcak A, Savier EL, Erisir A, Cang J, Campbell JN. Co-Conservation of Synaptic Gene Expression and Circuitry in Collicular Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634521. [PMID: 39896595 PMCID: PMC11785205 DOI: 10.1101/2025.01.23.634521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The superior colliculus (SC), a midbrain sensorimotor hub, is anatomically and functionally similar across vertebrates, but how its cell types have evolved is unclear. Using single-nucleus transcriptomics, we compared the SC's molecular and cellular organization in mice, tree shrews, and humans. Despite over 96 million years of evolutionary divergence, we identified ~30 consensus neuronal subtypes, including Cbln2+ neurons that form the SC-pulvinar circuit in mice and tree shrews. Synapse-related genes were among the most conserved, unlike neocortex, suggesting co-conservation of synaptic genes and circuitry. In contrast, cilia-related genes diverged significantly across species, highlighting the potential importance of the neuronal primary cilium in SC evolution. Additionally, we identified a novel inhibitory SC neuron in tree shrews and humans but not mice. Our findings reveal that the SC has evolved by conserving neuron subtypes, synaptic genes, and circuitry, while diversifying ciliary gene expression and an inhibitory neuron subtype.
Collapse
Affiliation(s)
- Yuanming Liu
- Department of Biology, Charlottesville, VA 22904, USA
| | - John A McDaniel
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Chen Chen
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Lu Yang
- Department of Biology, Charlottesville, VA 22904, USA
| | - Arda Kipcak
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | | | - Alev Erisir
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Jianhua Cang
- Department of Biology, Charlottesville, VA 22904, USA
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - John N Campbell
- Department of Biology, Charlottesville, VA 22904, USA
- Lead Contact
| |
Collapse
|
4
|
Yu CT, Follett HM, Summerfelt P, Allen KP, Guillaume C, Freling S, Carroll J. Unexpected Retinal Abnormalities in the Cone-Dominant Northern Tree Shrew. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:235-239. [PMID: 39930202 DOI: 10.1007/978-3-031-76550-6_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The cone-dominant northern tree shrew has been used in a wide range of vision research studies. Given the similarity of their visual system to primates, there have been extensive in vivo and ex vivo studies of the visual system from retina to cortex. Tree shrews have long been used to study myopia and more recently, experimental models of glaucoma and diabetic retinopathy have become available. They are also amenable to various noninvasive imaging methods-previous studies have established their retinal structure and function through scanning laser ophthalmoscopy, optical coherence tomography, and adaptive optics scanning light ophthalmoscopy. In this study, we characterized abnormal retinal findings in a cohort of presumed normal tree shrews via noninvasive imaging. In 31 tree shrews, 15 were found to have one of three distinct retinal phenotypes. The first (n = 10) is the presence of hypo-reflective and hypo-autofluorescent foci nasal to the optic nerve across the horizontal meridian. The second phenotype (n = 4) is a mottled fundus appearance with disrupted outer retinal laminations in a region temporal to the optic nerve. The last observed phenotype (n = 1) appeared as widespread patches of decreased near-infrared reflectance and short-wavelength autofluorescence intensity which aligned with regions observed to have inner retinal layer thinning and disrupted cone mosaic. With the growing use of the tree shrew as an animal model in vision research, it is essential to determine the etiology of the observed abnormalities, through future genetic testing, blood chemistry panels, histology, and/or longitudinal imaging.
Collapse
Affiliation(s)
- Ching Tzu Yu
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hannah M Follett
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Phyllis Summerfelt
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kenneth P Allen
- Department of Microbiology and Immunology, Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chloe Guillaume
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susan Freling
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Li H, Mei L, Nie X, Wu L, Lv L, Ren X, Yang J, Cao H, Wu J, Zhang Y, Hu Y, Wang W, Turck CW, Shi B, Li J, Xu L, Hu X. The Tree Shrew Model of Parkinson Disease: A Cost-Effective Alternative to Nonhuman Primate Models. J Transl Med 2024; 104:102145. [PMID: 39343009 DOI: 10.1016/j.labinv.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
The surge in demand for experimental monkeys has led to a rapid increase in their costs. Consequently, there is a growing need for a cost-effective model of Parkinson disease (PD) that exhibits all core clinical and pathologic phenotypes. Evolutionarily, tree shrews (Tupaia belangeri) are closer to primates in comparison with rodents and could be an ideal species for modeling PD. To develop a tree shrew PD model, we used the 1-methyl-4-phenylpyridinium (MPP+), a metabolite derived from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, to induce lesions in dopaminergic neurons of the unilateral substantia nigra. The induced tree shrew model consistently exhibited and maintained all classic clinical manifestations of PD for a 5-month period. The symptoms included bradykinesia, rest tremor, and postural instability, and ∼50% individuals showed apomorphine-induced rotations, a classic phenotype of unilateral PD models. All these are closely resembled the ones observed in PD monkeys. Meanwhile, this model was also sensitive to L-dopa treatment in a dose-dependent manner, which suggested that the motor deficits are dopamine dependent. Immunostaining showed a significant loss of dopaminergic neurons (∼95%) in the lesioned substantia nigra, which is a crucial PD pathological marker. Moreover, a control group of nigral saline injection did not show any motor deficits and pathological changes. Cytomorphologic analysis revealed that the size of nigral dopaminergic neurons in tree shrews is much bigger than that of rodents and is close to that of macaques. The morphologic similarity may be an important structural basis for the manifestation of the highly similar phenotypes between monkey and tree shrew PD models. Collectively, in this study, we have successfully developed a PD model in a small animal species that faithfully recapitulated the classic clinical symptoms and key pathological indicators of PD monkeys, providing a novel and low-cost avenue for evaluation of PD treatments and underlying mechanisms.
Collapse
Affiliation(s)
- Hao Li
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Leyi Mei
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xiupeng Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Liping Wu
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longbao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Xiaofeng Ren
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jitong Yang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Haonan Cao
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Wu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingzhou Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenchao Wang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Christoph W Turck
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Bingyin Shi
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey.
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Xintian Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
6
|
Bourne JA, Cichy RM, Kiorpes L, Morrone MC, Arcaro MJ, Nielsen KJ. Development of Higher-Level Vision: A Network Perspective. J Neurosci 2024; 44:e1291242024. [PMID: 39358020 PMCID: PMC11450542 DOI: 10.1523/jneurosci.1291-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Most studies on the development of the visual system have focused on the mechanisms shaping early visual stages up to the level of primary visual cortex (V1). Much less is known about the development of the stages after V1 that handle the higher visual functions fundamental to everyday life. The standard model for the maturation of these areas is that it occurs sequentially, according to the positions of areas in the adult hierarchy. Yet, the existing literature reviewed here paints a different picture, one in which the adult configuration emerges through a sequence of unique network configurations that are not mere partial versions of the adult hierarchy. In addition to studying higher visual development per se to fill major gaps in knowledge, it will be crucial to adopt a network-level perspective in future investigations to unravel normal developmental mechanisms, identify vulnerabilities to developmental disorders, and eventually devise treatments for these disorders.
Collapse
Affiliation(s)
- James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, Maryland 20814
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Einstein Center for Neurosciences Berlin, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, New York 10003
| | - Maria Concetta Morrone
- IRCCS Fondazione Stella Maris, Pisa 56128, Italy
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Michael J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kristina J Nielsen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
7
|
Nie XP, Xu XS, Feng Z, Wang W, Ma C, Yang YX, Li JN, Zhou QX, Xu FQ, Luo MH, Zhou JN, Gong H, Xu L. Depicting Primate-Like Granular Dorsolateral Prefrontal Cortex in the Chinese Tree Shrew. eNeuro 2024; 11:ENEURO.0307-24.2024. [PMID: 39455280 PMCID: PMC11514722 DOI: 10.1523/eneuro.0307-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
It remains unknown whether the Chinese tree shrew, regarded as the closest sister of primate, has evolved a dorsolateral prefrontal cortex (dlPFC) comparable with primates that is characterized by a fourth layer (L4) enriched with granular cells and reciprocal connections with the mediodorsal nucleus (MD). Here, we reported that following AAV-hSyn-EGFP expression in the MD neurons, the fluorescence micro-optical sectioning tomography revealed their projection trajectories and targeted brain areas, such as the hippocampus, the corpus striatum, and the dlPFC. Cre-dependent transsynaptic viral tracing identified the MD projection terminals that targeted the L4 of the dlPFC, in which the presence of granular cells was confirmed via cytoarchitectural studies by using the Nissl, Golgi, and vGlut2 stainings. Additionally, the L5/6 of the dlPFC projected back to the MD. These results suggest that the tree shrew has evolved a primate-like dlPFC which can serve as an alternative for studying cognition-related functions of the dlPFC.
Collapse
Affiliation(s)
- Xiu-Peng Nie
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Xiao-Shan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Zhao Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Wei Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Chen Ma
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Yue-Xiong Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Jin-Nan Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Qi-Xin Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Fu-Qiang Xu
- Shen Zhen Institute of Advanced Technology, Chinese Academy of Sciences, Xi Li Shen Zhen University Town, Shenzhen 518055, China
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
| | - Min-Hua Luo
- State Key Laboratory of Virology and Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiang-Ning Zhou
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
- Institute of Brain Science, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Lin Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
| |
Collapse
|
8
|
Yao YG, Lu L, Ni RJ, Bi R, Chen C, Chen JQ, Fuchs E, Gorbatyuk M, Lei H, Li H, Liu C, Lv LB, Tsukiyama-Kohara K, Kohara M, Perez-Cruz C, Rainer G, Shan BC, Shen F, Tang AZ, Wang J, Xia W, Xia X, Xu L, Yu D, Zhang F, Zheng P, Zheng YT, Zhou J, Zhou JN. Study of tree shrew biology and models: A booming and prosperous field for biomedical research. Zool Res 2024; 45:877-909. [PMID: 39004865 PMCID: PMC11298672 DOI: 10.24272/j.issn.2095-8137.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The tree shrew ( Tupaia belangeri) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field. Additionally, determining the key questions best answered using tree shrews constitutes another difficulty. Tree shrew models have historically been used to study hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, myopia, and psychosocial stress-induced depression, with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases. Despite these efforts, the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research. This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model. We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies. The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models, meeting the increasing demands of life science and biomedical research.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| | - Li Lu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Rui Bi
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ceshi Chen
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jia-Qi Chen
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute of Primate Research, Göttingen 37077, Germany
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongli Li
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Long-Bao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Gregor Rainer
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Bao-Ci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - An-Zhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530000, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530000, China
| | - Xueshan Xia
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ling Xu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dandan Yu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Feng Zhang
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ping Zheng
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yong-Tang Zheng
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jumin Zhou
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- Institute of Brain Science, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
9
|
Li H, Xiang BL, Li X, Li C, Li Y, Miao Y, Ma GL, Ma YH, Chen JQ, Zhang QY, Lv LB, Zheng P, Bi R, Yao YG. Cognitive Deficits and Alzheimer's Disease-Like Pathologies in the Aged Chinese Tree Shrew. Mol Neurobiol 2024; 61:1892-1906. [PMID: 37814108 DOI: 10.1007/s12035-023-03663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Alzheimer's disease (AD) is the most common chronic progressive neurodegenerative disease in the elderly. It has an increasing prevalence and a growing health burden. One of the limitations in studying AD is the lack of animal models that show features of Alzheimer's pathogenesis. The tree shrew has a much closer genetic affinity to primates than to rodents and has great potential to be used for research into aging and AD. In this study, we aimed to investigate whether tree shrews naturally develop cognitive impairment and major AD-like pathologies with increasing age. Pole-board and novel object recognition tests were used to assess the cognitive performance of adult (about 1 year old) and aged (6 years old or older) tree shrews. The main AD-like pathologies were assessed by Western blotting, immunohistochemical staining, immunofluorescence staining, and Nissl staining. Our results showed that the aged tree shrews developed an impaired cognitive performance compared to the adult tree shrews. Moreover, the aged tree shrews exhibited several age-related phenotypes that are associated with AD, including increased levels of amyloid-β (Aβ) accumulation and phosphorylated tau protein, synaptic and neuronal loss, and reactive gliosis in the cortex and the hippocampal tissues. Our study provides further evidence that the tree shrew is a promising model for the study of aging and AD.
Collapse
Affiliation(s)
- Hongli Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Cong Li
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Ying Miao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guo-Lan Ma
- Kunming Biological Diversity Regional Center of Large Apparatus and Equipments, Public Technology Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yu-Hua Ma
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Jia-Qi Chen
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Qing-Yu Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Long-Bao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| |
Collapse
|
10
|
Li C, Bi R, Wang L, Ma YH, Yao YG, Zheng P. Characterization of long-term ex vivo expansion of tree shrew spermatogonial stem cells. Zool Res 2023; 44:1080-1094. [PMID: 37914523 PMCID: PMC10802108 DOI: 10.24272/j.issn.2095-8137.2023.317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
Tree shrews ( Tupaia belangeri chinensis) share a close relationship to primates and have been widely used in biomedical research. We previously established a spermatogonial stem cell (SSC)-based gene editing platform to generate transgenic tree shrews. However, the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear. Here, we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages. We found that SSCs lost spermatogenesis ability after long-term expansion (>50 passages), as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia (SPG)-derived spermatocytes or spermatids marking spermatogenesis. RNA sequencing (RNA-seq) analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers. Specifically, DNA damage response and repair genes (e.g., MRE11, SMC3, BLM, and GEN1) were down-regulated, whereas genes associated with mitochondrial function (e.g., NDUFA9, NDUFA8, NDUFA13, and NDUFB8) were up-regulated after expansion. The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells. Supplementation with nicotinamide adenine dinucleotide (NAD +) precursor nicotinamide riboside (NR) exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture. Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Hua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| |
Collapse
|
11
|
Li CJ, Hui YQ, Zhang R, Zhou HY, Cai X, Lu L. A comparison of behavioral paradigms assessing spatial memory in tree shrews. Cereb Cortex 2023; 33:10303-10321. [PMID: 37642602 PMCID: PMC11640784 DOI: 10.1093/cercor/bhad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Impairments in spatial navigation in humans can be preclinical signs of Alzheimer's disease. Therefore, cognitive tests that monitor deficits in spatial memory play a crucial role in evaluating animal models with early stage Alzheimer's disease. While Chinese tree shrews (Tupaia belangeri) possess many features suitable for Alzheimer's disease modeling, behavioral tests for assessing spatial cognition in this species are lacking. Here, we established reward-based paradigms using the radial-arm maze and cheeseboard maze for tree shrews, and tested spatial memory in a group of 12 adult males in both tasks, along with a control water maze test, before and after bilateral lesions to the hippocampus, the brain region essential for spatial navigation. Tree shrews memorized target positions during training, and task performance improved gradually until reaching a plateau in all 3 mazes. However, spatial learning was compromised post-lesion in the 2 newly developed tasks, whereas memory retrieval was impaired in the water maze task. These results indicate that the cheeseboard task effectively detects impairments in spatial memory and holds potential for monitoring progressive cognitive decline in aged or genetically modified tree shrews that develop Alzheimer's disease-like symptoms. This study may facilitate the utilization of tree shrew models in Alzheimer's disease research.
Collapse
Affiliation(s)
- Cheng-Ji Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
- National Research Facility for Phenotypic & Genetic Analysis of Model
Animals (Primate Facility), Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, Yunnan
650107, China
| | - Yi-Qing Hui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
| | - Rong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
- National Research Facility for Phenotypic & Genetic Analysis of Model
Animals (Primate Facility), Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, Yunnan
650107, China
| | - Hai-Yang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
| | - Xing Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
- National Research Facility for Phenotypic & Genetic Analysis of Model
Animals (Primate Facility), Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, Yunnan
650107, China
| | - Li Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
- National Research Facility for Phenotypic & Genetic Analysis of Model
Animals (Primate Facility), Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, Yunnan
650107, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese
Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
Cang J, Fu J, Tanabe S. Neural circuits for binocular vision: Ocular dominance, interocular matching, and disparity selectivity. Front Neural Circuits 2023; 17:1084027. [PMID: 36874946 PMCID: PMC9975354 DOI: 10.3389/fncir.2023.1084027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The brain creates a single visual percept of the world with inputs from two eyes. This means that downstream structures must integrate information from the two eyes coherently. Not only does the brain meet this challenge effortlessly, it also uses small differences between the two eyes' inputs, i.e., binocular disparity, to construct depth information in a perceptual process called stereopsis. Recent studies have advanced our understanding of the neural circuits underlying stereoscopic vision and its development. Here, we review these advances in the context of three binocular properties that have been most commonly studied for visual cortical neurons: ocular dominance of response magnitude, interocular matching of orientation preference, and response selectivity for binocular disparity. By focusing mostly on mouse studies, as well as recent studies using ferrets and tree shrews, we highlight unresolved controversies and significant knowledge gaps regarding the neural circuits underlying binocular vision. We note that in most ocular dominance studies, only monocular stimulations are used, which could lead to a mischaracterization of binocularity. On the other hand, much remains unknown regarding the circuit basis of interocular matching and disparity selectivity and its development. We conclude by outlining opportunities for future studies on the neural circuits and functional development of binocular integration in the early visual system.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Jieming Fu
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
13
|
Tanabe S, Fu J, Cang J. Strong tuning for stereoscopic depth indicates orientation-specific recurrent circuitry in tree shrew V1. Curr Biol 2022; 32:5274-5284.e6. [PMID: 36417902 PMCID: PMC9772061 DOI: 10.1016/j.cub.2022.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Neurons in the primary visual cortex (V1) are tuned to specific disparities between the two retinal images, which form the neural substrate for stereoscopic vision. We show that V1 neurons in tree shrews, but not in mice, display highly selective responses to narrow ranges of disparity in random-dot stereograms. Surprisingly, V1 neurons in both species show similarly strong tuning to gratings of varying interocular phase differences. This stimulus-dependent dissociation of disparity tuning can be explained by a network model that combines both feedforward and recurrent connections. The features of the model connections are supported by cortical organizations specific to each species. We validate this model by identifying putative inhibitory neurons and confirming their predicted disparity tuning in both species. Together, our studies establish a foundation for using tree shrews in studying binocular vision and raise an exciting possibility of how cortical columns could be uniquely important in computing stereoscopic depth.
Collapse
Affiliation(s)
- Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Jieming Fu
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22904, USA
| | - Jianhua Cang
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
14
|
Li C, McHaney KM, Sederberg PB, Cang J. Tree Shrews as an Animal Model for Studying Perceptual Decision-Making Reveal a Critical Role of Stimulus-Independent Processes in Guiding Behavior. eNeuro 2022; 9:ENEURO.0419-22.2022. [PMID: 36414413 PMCID: PMC9718354 DOI: 10.1523/eneuro.0419-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Decision-making is an essential cognitive process by which we interact with the external world. However, attempts to understand the neural mechanisms of decision-making are limited by the current available animal models and the technologies that can be applied to them. Here, we build on the renewed interest in using tree shrews (Tupaia belangeri) in vision research and provide strong support for them as a model for studying visual perceptual decision-making. Tree shrews learned very quickly to perform a two-alternative forced choice contrast discrimination task, and they exhibited differences in response time distributions depending on the reward and punishment structure of the task. Specifically, they made occasional fast guesses when incorrect responses are punished by a constant increase in the interval between trials. This behavior was suppressed when faster incorrect responses were discouraged by longer intertrial intervals. By fitting the behavioral data with two variants of racing diffusion decision models, we found that the between-trial delay affected decision-making by modulating the drift rate of a time accumulator. Our results thus provide support for the existence of an internal process that is independent of the evidence accumulation in decision-making and lay a foundation for future mechanistic studies of perceptual decision-making using tree shrews.
Collapse
Affiliation(s)
- Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Kara M McHaney
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Per B Sederberg
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Jianhua Cang
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
15
|
Visual neuroscience: A shrewd look at perceptual learning. Curr Biol 2022; 32:R839-R841. [PMID: 35944484 DOI: 10.1016/j.cub.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new study provides insight into the neuronal mechanisms that underlie visual learning in the tree shrew, revealing how improved coding for trained stimuli in visual cortex can negatively affect the perception of other stimuli.
Collapse
|
16
|
Chen JQ, Zhang Q, Yu D, Bi R, Ma Y, Li Y, Lv LB, Yao YG. Optimization of Milk Substitutes for the Artificial Rearing of Chinese Tree Shrews (Tupaia belangeri chinensis). Animals (Basel) 2022; 12:ani12131655. [PMID: 35804554 PMCID: PMC9265009 DOI: 10.3390/ani12131655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The Chinese tree shrew, a squirrel-like mammal, has been widely used as a laboratory animal in biological research. However, the low survival rate of the pups has seriously hindered the establishment of inbred lines of this species and further limited its wider use. We found a milk substitute appropriate for artificial rearing of Chinese tree shrew pups independent of any obvious adverse effects on their survival, health, and reproductive performance compared to those of the maternally reared pups. The successful optimization of a milk substitute for the artificial rearing of Chinese tree shrew pups may increase the availability of this experimental animal. Abstract The Chinese tree shrew (Tupaia belangeri chinensis) has the potential to replace the use of non-human primates in biomedical research. To increase the availability of this species, we have undertaken the ambitious task of establishing inbred lines of the Chinese tree shrew; however, we have been hindered by a low survival rate of inbred pups. Here, we report our artificial rearing (AR) of Chinese tree shrew pups using four different milk substitutes: the formula described by Tsang and Collins (milk TC) and three commercially available milk substitutes intended for possums (milk A and milk C) and for guinea pigs (milk B). We compared the effects of these milk substitutes and maternal milk on the daily milk consumption, growth performance, and survival of the pups. We also assessed the life span and reproductive performance of the F1 individuals given the best milk substitute as compared to the maternally reared (MR) pups. Milk B was found to be appropriate for AR. Pups fed with milk B had a high survival rate at the weaning age compared to those fed with the other milk substitutes. The AR pups fed with milk B had a life span similar to that of MR pups. AR females fed with milk B had an earlier age of the first reproduction, a larger number of litters, and a higher rate of survival of the offspring at the weaning age compared with the MR females. The successful optimization of a milk substitute for AR of Chinese tree shrew pups will undoubtedly facilitate the wide usage of this experimental animal.
Collapse
Affiliation(s)
- Jia-Qi Chen
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
| | - Qingyu Zhang
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
| | - Dandan Yu
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Rui Bi
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yuhua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
| | - Yijiang Li
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Correspondence: (L.-B.L.); (Y.-G.Y.)
| | - Yong-Gang Yao
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Correspondence: (L.-B.L.); (Y.-G.Y.)
| |
Collapse
|
17
|
Zheng X, Xu L, Ye M, Gu T, Yao YL, Lv LB, Yu D, Yao YG. Characterizing the role of Tupaia DNA damage inducible transcript 3 (DDIT3) gene in viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104307. [PMID: 34748795 DOI: 10.1016/j.dci.2021.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
DNA damage inducible transcript 3 (DDIT3, also known as CHOP) belongs to the CCAAT/enhancer-binding protein (C/EBP) family and plays an essential role in endoplasmic reticulum stress. Here, we characterized the potential role of the Chinese tree shrew (Tupaia belangeri chinensis) DDIT3 (tDDIT3) in viral infections. The tDDIT3 protein is highly conserved and has a species-specific insertion of the SQSS repeat upstream of the C-terminal basic-leucine zipper (bZIP) domain. Phylogenetic analysis of DDIT3 protein sequences of tree shrew and related mammals indicated a closer genetic affinity between tree shrew and primates than between tree shrew and rodents. Three positively selected sites (PSSs: Glu83, Pro93, and Ser172) were identified in tDDIT3 based on the branch-site model. Expression analysis of tDDIT3 showed a constitutively expressed level in different tissues and a significantly increased level in tree shrew cells upon herpes simplex virus type 1 (HSV-1) and Newcastle disease virus (NDV) infections. Overexpression of tDDIT3 significantly increased the production of HSV-1 and vesicular stomatitis virus (VSV) in tree shrew primary renal cells (TSPRCs), whereas tDDIT3 knockout in tree shrew stable cell line (TSR6 cells) had an inhibitory effect on virus production. The enhanced effect on viral infection by tDDIT3 was not associated with the three PSSs. Mechanistically, tDDIT3 overexpression inhibited type I IFN signaling. tDDIT3 interacted with tMAVS through CARD and PRR domains, but not with other immune-related factors such as tMDA5, tSTING and tTBK1. Collectively, our results revealed tDDIT3 as a negative regulator for virus infection.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|