1
|
Chong ZZ, Souayah N. Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis. Int J Mol Sci 2025; 26:4276. [PMID: 40362512 PMCID: PMC12072292 DOI: 10.3390/ijms26094276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult neurodegenerative disorder. Since no cure has been found, finding effective therapeutic targets for ALS remains a major challenge. Gene C9orf72 mutations with the formation of hexanucleotide repeat (GGGGCC) expansion (HRE) have been considered the most common genetic pathogenesis of ALS. The literature review indicates that the C9orf72 HRE causes both the gain-of-function toxicity and loss of function of C9ORF72. The formation of RNA foci and dipeptide repeats (DPRs) resulting from HRE is responsible for toxic function gain. The RNA foci can interfere with RNA processing, while DPRs directly bind to and sequester associated proteins to disrupt processes of rRNA synthesis, mRNA translation, autophagy, and nucleocytoplasmic transport. The mutations of C9orf72 and HRE result in the loss of functional C9ORF72. Under physiological conditions, C9ORF72 binds to Smith-Magenis chromosome region 8 and WD repeat-containing protein and forms a protein complex. Loss of C9ORF72 leads to autophagic impairment, increased oxidative stress, nucleocytoplasmic transport impairment, and inflammatory response. The attempted treatments for ALS have been tried by targeting C9orf72 HRE; however, the outcomes are far from satisfactory yet. More studies should be performed on pharmacological and molecular modulators against C9orf72 HRE to evaluate their efficacy by targeting HRE.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S Orange, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
2
|
Ayyadurai VAS, Deonikar P, Kamm RD. A molecular systems architecture of neuromuscular junction in amyotrophic lateral sclerosis. NPJ Syst Biol Appl 2025; 11:27. [PMID: 40097438 PMCID: PMC11914587 DOI: 10.1038/s41540-025-00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
A molecular systems architecture is presented for the neuromuscular junction (NMJ) in order to provide a framework for organizing complexity of biomolecular interactions in amyotrophic lateral sclerosis (ALS) using a systematic literature review process. ALS is a fatal motor neuron disease characterized by progressive degeneration of the upper and lower motor neurons that supply voluntary muscles. The neuromuscular junction contains cells such as upper and lower motor neurons, skeletal muscle cells, astrocytes, microglia, Schwann cells, and endothelial cells, which are implicated in pathogenesis of ALS. This molecular systems architecture provides a multi-layered understanding of the intra- and inter-cellular interactions in the ALS neuromuscular junction microenvironment, and may be utilized for target identification, discovery of single and combination therapeutics, and clinical strategies to treat ALS.
Collapse
Affiliation(s)
- V A Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, UK.
- Open Science Institute, International Center for Integrative Systems, Cambridge, MA, UK.
| | - Prabhakar Deonikar
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, UK
- Open Science Institute, International Center for Integrative Systems, Cambridge, MA, UK
| | - Roger D Kamm
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, UK
| |
Collapse
|
3
|
Sun S, Shen Y, Zhang X, Ding N, Xu Z, Zhang Q, Li L. The MuSK agonist antibody protects the neuromuscular junction and extends the lifespan in C9orf72-ALS mice. Mol Ther 2024; 32:2176-2189. [PMID: 38734896 PMCID: PMC11286808 DOI: 10.1016/j.ymthe.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/06/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.
Collapse
Affiliation(s)
- Shuangshuang Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yihui Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ning Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhe Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qijie Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
4
|
Couturier N, Hörner SJ, Nürnberg E, Joazeiro C, Hafner M, Rudolf R. Aberrant evoked calcium signaling and nAChR cluster morphology in a SOD1 D90A hiPSC-derived neuromuscular model. Front Cell Dev Biol 2024; 12:1429759. [PMID: 38966427 PMCID: PMC11222430 DOI: 10.3389/fcell.2024.1429759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.
Collapse
Affiliation(s)
- Nathalie Couturier
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Claudio Joazeiro
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Wang G, Jin S, Liu J, Li X, Dai P, Wang Y, Hou SX. A neuron-immune circuit regulates neurodegeneration in the hindbrain and spinal cord of Arf1-ablated mice. Natl Sci Rev 2023; 10:nwad222. [PMID: 38239560 PMCID: PMC10794899 DOI: 10.1093/nsr/nwad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 01/22/2024] Open
Abstract
Neuroimmune connections have been revealed to play a central role in neurodegenerative diseases (NDs). However, the mechanisms that link the central nervous system (CNS) and peripheral immune cells are still mostly unknown. We recently found that specific ablation of the Arf1 gene in hindbrain and spinal cord neurons promoted NDs through activating the NLRP3 inflammasome in microglia via peroxided lipids and adenosine triphosphate (ATP) releasing. Here, we demonstrate that IL-1β with elevated chemokines in the neuronal Arf1-ablated mouse hindbrain and spinal cord recruited and activated γδ T cells in meninges. The activated γδ T cells then secreted IFN-γ that entered into parenchyma to activate the microglia-A1 astrocyte-C3-neuronal C3aR neurotoxic pathway. Remarkably, the neurodegenerative phenotypes of the neuronal Arf1-ablated mice were strongly ameliorated by IFN-γ or C3 knockout. Finally, we show that the Arf1-reduction-induced neuroimmune-IFN-γ-gliosis pathway exists in human NDs, particularly in amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unknown mechanism that links the CNS and peripheral immune cells to promote neurodegeneration.
Collapse
Affiliation(s)
- Guohao Wang
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Shuhan Jin
- Department of Cell and Developmental Biology at the School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Jiaqi Liu
- Department of Cell and Developmental Biology at the School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Xu Li
- Department of Cell and Developmental Biology at the School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Peng Dai
- Department of Cell and Developmental Biology at the School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Yuetong Wang
- Department of Cell and Developmental Biology at the School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Steven X Hou
- Department of Cell and Developmental Biology at the School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai200438, China
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|