1
|
Neal MD, Okonkwo DO, Guyette FX, Luther JF, Vincent LE, Puccio AM, Harner AM, Agnone AG, Brubaker DP, Love ET, Leeper CM, Brown JB, Forsythe R, Spinella PC, Yazer MH, Wisniewski SR, Sperry JL. Early Cold-stored Platelet Transfusion following Traumatic Brain Injury: A Randomized Clinical Trial. Ann Surg 2025; 281:796-805. [PMID: 39840438 PMCID: PMC11974628 DOI: 10.1097/sla.0000000000006640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
OBJECTIVE To determine the feasibility, efficacy, and safety of cold storage compared with room temperature (RT) platelet transfusion in patients with traumatic brain injury (TBI). BACKGROUND Data demonstrating the safety and efficacy of cold-stored platelet (CSP) transfusion are lacking after TBI. METHODS A phase 2, randomized, open-label clinical trial was performed at a single U.S. trauma center. Traumatic brain-injured patients with positive brain imaging and a need for platelet transfusion received up to 2 apheresis units of CSPs stored out to 14 days versus standard care RT platelet transfusion. The primary outcome was feasibility and the principal clinical outcome for efficacy and safety was the 6-month Glasgow Coma Scale-extended score. RESULTS The 6-month Glasgow Outcome Scale-extended score distributions were not different across cold stored and RT platelet arms (odds ratio: 1.58, 95% CI: 0.71 to 3.54, P = 0.27). A lower rate of neurosurgical craniotomy/craniectomy was found for those receiving CSPs (difference: -14.4%, 95% CI: -26.5% to -2.3%, P = 0.03). Adverse event rates did not differ across groups. The storage age of the cold-stored product was not associated with outcome differences. CONCLUSIONS In brain-injured patients requiring platelet transfusion, early CSP transfusion is feasible and did not result in improved 6-month Glasgow Coma Scale-extended scores. Early CSP transfusion was associated with a lower rate of neurosurgical operative intervention without an increase in adverse events. The storage age of the CSP product was not associated with outcome differences. Future phase 3 clinical trials are required to determine clinical outcome differences and safety attributable to CSP transfusion after TBI.
Collapse
Affiliation(s)
- Matthew D. Neal
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Francis X. Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA
| | - James F. Luther
- University of Pittsburgh School of Public Health, Pittsburgh, PA
| | | | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | - Allison G. Agnone
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | - Emily T. Love
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Christine M. Leeper
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Joshua B. Brown
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Raquel Forsythe
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Philip C. Spinella
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Mark H. Yazer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Jason L. Sperry
- Department of Surgery, Trauma and Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
2
|
Juffermans NP, Gözden T, Brohi K, Davenport R, Acker JP, Reade MC, Maegele M, Neal MD, Spinella PC. Transforming research to improve therapies for trauma in the twenty-first century. Crit Care 2024; 28:45. [PMID: 38350971 PMCID: PMC10865682 DOI: 10.1186/s13054-024-04805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Improvements have been made in optimizing initial care of trauma patients, both in prehospital systems as well as in the emergency department, and these have also favorably affected longer term outcomes. However, as specific treatments for bleeding are largely lacking, many patients continue to die from hemorrhage. Also, major knowledge gaps remain on the impact of tissue injury on the host immune and coagulation response, which hampers the development of interventions to treat or prevent organ failure, thrombosis, infections or other complications of trauma. Thereby, trauma remains a challenge for intensivists. This review describes the most pressing research questions in trauma, as well as new approaches to trauma research, with the aim to bring improved therapies to the bedside within the twenty-first century.
Collapse
Affiliation(s)
- Nicole P Juffermans
- Department of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
- Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Tarik Gözden
- Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Ross Davenport
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Jason P Acker
- Canadian Blood Services, Innovation and Portfolio Management, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Michael C Reade
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Marc Maegele
- Department of Trauma and Orthopedic Surgery Cologne-Merheim Medical Center Institute of Research, Operative Medicine University Witten-Herdecke, Cologne, Germany
| | - Matthew D Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip C Spinella
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Lu J, Karkouti K, Peer M, Englesakis M, Spinella PC, Apelseth TO, Scorer TG, Kahr WHA, McVey M, Rao V, Abrahamyan L, Lieberman L, Mewhort H, Devine DV, Callum J, Bartoszko J. Cold-stored platelets for acute bleeding in cardiac surgical patients: a narrative review. Can J Anaesth 2023; 70:1682-1700. [PMID: 37831350 DOI: 10.1007/s12630-023-02561-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/19/2023] [Accepted: 04/30/2023] [Indexed: 10/14/2023] Open
Abstract
PURPOSE Cold-stored platelets (CSP) are an increasingly active topic of international research. They are maintained at 1-6 °C, in contrast to standard room-temperature platelets (RTP) kept at 20-24 °C. Recent evidence suggests that CSP have superior hemostatic properties compared with RTP. This narrative review explores the application of CSP in adult cardiac surgery, summarizes the preclinical and clinical evidence for their use, and highlights recent research. SOURCE A targeted search of MEDLINE and other databases up to 24 February 2022 was conducted. Search terms combined concepts such as cardiac surgery, blood, platelet, and cold-stored. Searches of trial registries ClinicalTrials.gov and WHO International Clinical Trials Registry Platform were included. Articles were included if they described adult surgical patients as their population of interest and an association between CSP and clinical outcomes. References of included articles were hand searched. PRINCIPAL FINDINGS When platelets are stored at 1-6 °C, their metabolic rate is slowed, preserving hemostatic function for increased storage duration. Cold-stored platelets have superior adhesion characteristics under physiologic shear conditions, and similar or superior aggregation responses to physiologic agonists. Cold-stored platelets undergo structural, metabolic, and molecular changes which appear to "prime" them for hemostatic activity. While preliminary, clinical evidence supports the conduct of trials comparing CSP with RTP for patients with platelet-related bleeding, such as those undergoing cardiac surgery. CONCLUSION Cold-stored platelets may have several advantages over RTP, including increased hemostatic capacity, extended shelf-life, and reduced risk of bacterial contamination. Large clinical trials are needed to establish their potential role in the treatment of acutely bleeding patients.
Collapse
Affiliation(s)
- Justin Lu
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Keyvan Karkouti
- Department of Anesthesia and Pain Management, Sinai Health System, Women's College Hospital, University Health Network, Toronto General Hospital, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, Sinai Health System, Women's College Hospital, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - Marina Englesakis
- Library & Information Services, University Health Network, Toronto, ON, Canada
| | - Philip C Spinella
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Torunn O Apelseth
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, University of Bergen, Bergen, Norway
- Norwegian Armed Forces Joint Medical Services, Norwegian Armed Forces, Oslo, Norway
| | - Thomas G Scorer
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Walter H A Kahr
- Division of Haematology/Oncology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Mark McVey
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Lusine Abrahamyan
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Toronto Health Economics and Technology Assessment (THETA) Collaborative, Toronto General Research Institute, Toronto, ON, Canada
| | - Lani Lieberman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Holly Mewhort
- Department of Surgery, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Dana V Devine
- Canadian Blood Services, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Jeannie Callum
- Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston General Hospital, Kingston, ON, Canada
| | - Justyna Bartoszko
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
- Department of Anesthesia and Pain Management, Sinai Health System, Women's College Hospital, University Health Network, Toronto General Hospital, 200 Elizabeth Street, 3EN-464, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
4
|
Mindukshev I, Fock E, Dobrylko I, Sudnitsyna J, Gambaryan S, Panteleev MA. Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. Int J Mol Sci 2022; 23:ijms231810667. [PMID: 36142580 PMCID: PMC9505593 DOI: 10.3390/ijms231810667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Hypo- and hyperthermia affect both primary and secondary hemostasis; however, there are controversial data concerning platelet activation and the underlying mechanisms under hypo- and hyperthermia. The discrepancies in the data could be partly explained by different approaches to hemostatic reactions analysis. We applied a new LaSca-TMF laser particle analyzer for a simultaneous fluorescence and laser scattering analysis of platelet responses at different temperatures. Human platelets were activated by ADP in a wide range of temperatures, and platelet transformations (e.g., a shape change reaction, aggregation and clot formation) and the intracellular calcium concentration ([Ca2+]i) were analyzed by LaSca-TMF and confocal microscopy. The platelet shape change reaction gradually increased with a rising temperature. The platelet aggregation strongly decreased at low ADP concentrations with the augmentation of the temperature and was independent of the temperature at high ADP concentrations. In contrast, the clotting time decreased with a temperature increase. Similar to the aggregation response, a rise in [Ca2+]i triggered by low ADP concentrations was higher under hypothermic conditions and the differences were independent of the temperature at high ADP concentrations. We showed that the key reactions of cellular hemostasis are differentially regulated by temperature and demonstrated for the first time that an accelerated aggregation under hypothermic conditions directly correlated with an increased level in [Ca2+]i in platelets.
Collapse
Affiliation(s)
- Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Irina Dobrylko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Correspondence: (S.G.); (M.A.P.)
| | - Mikhail A. Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
- Correspondence: (S.G.); (M.A.P.)
| |
Collapse
|
5
|
Widyaningrum R, Wu YW, Delila L, Lee DY, Wang TJ, Burnouf T. In vitro evaluation of platelet extracellular vesicles (PEVs) for corneal endothelial regeneration. Platelets 2022; 33:1237-1250. [PMID: 35949054 DOI: 10.1080/09537104.2022.2105829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Corneal endothelial cells (CECs) slowly decrease in number with increasing age, which is a clinical issue as these cells have very limited regenerative ability. Therapeutic platelet biomaterials are increasingly used in regenerative medicine and cell therapy because of their safety, cost-effective manufacture, and global availability from collected platelet concentrates (PCs). Platelet extracellular vesicles (PEVs) are a complex mixture of potent bioactive vesicles rich in molecules believed to be instrumental in tissue repair and regeneration. In this study we investigated the feasibility of using a PEVs preparation as an innovative regenerative biotherapy for corneal endothelial dysfunction. The PEVs were isolated from clinical-grade human PC supernatants by 20,000 × g ultracentrifugation and resuspension. PEVs exhibited a regular, fairly rounded shape, with an average size of <200 nm and were present at a concentration of approximately 1011 /mL. PEVs expressed cluster of differentiation 41 (CD41) and CD61, characteristic platelets membrane markers, and CD9 and CD63. ELISA and LC-MS/MS proteomic analyses revealed that the PEVs contained mixtures of growth factors and multiple other trophic factors, as well as proteins related to extracellular exosomes with functional activities associated with cell cadherin and adherens pathways. CECs treated with PEVs showed increased viability, an enhanced wound-healing rate, stronger proliferation markers, and an improved adhesion rate. PEVs did not exert cellular toxicity as evidenced by the maintenance of cellular morphology and preservation of corneal endothelial proteins. These findings clearly support further investigations of PEV biomaterials in animal models for translation as a new CEC regeneration biotherapy.
Collapse
Affiliation(s)
- Rifa Widyaningrum
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Ophthalmology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada-Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Deng-Yao Lee
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Shevchuk O, Begonja AJ, Gambaryan S, Totzeck M, Rassaf T, Huber TB, Greinacher A, Renne T, Sickmann A. Proteomics: A Tool to Study Platelet Function. Int J Mol Sci 2021; 22:ijms22094776. [PMID: 33946341 PMCID: PMC8125008 DOI: 10.3390/ijms22094776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Platelets are components of the blood that are highly reactive, and they quickly respond to multiple physiological and pathophysiological processes. In the last decade, it became clear that platelets are the key components of circulation, linking hemostasis, innate, and acquired immunity. Protein composition, localization, and activity are crucial for platelet function and regulation. The current state of mass spectrometry-based proteomics has tremendous potential to identify and quantify thousands of proteins from a minimal amount of material, unravel multiple post-translational modifications, and monitor platelet activity during drug treatments. This review focuses on the role of proteomics in understanding the molecular basics of the classical and newly emerging functions of platelets. including the recently described role of platelets in immunology and the development of COVID-19.The state-of-the-art proteomic technologies and their application in studying platelet biogenesis, signaling, and storage are described, and the potential of newly appeared trapped ion mobility spectrometry (TIMS) is highlighted. Additionally, implementing proteomic methods in platelet transfusion medicine, and as a diagnostic and prognostic tool, is discussed.
Collapse
Affiliation(s)
- Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Correspondence: (O.S.); (A.S.)
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez pr. 44, 194223 St. Petersburg, Russia;
| | - Matthias Totzeck
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tienush Rassaf
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany;
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Medizinisches Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Correspondence: (O.S.); (A.S.)
| |
Collapse
|
7
|
Nellis ME, Spinella PC, Tucci M, Stanworth SJ, Steiner ME, Cushing MM, Davis PJ, Karam O. Effect of platelet storage duration on clinical outcomes and incremental platelet change in critically ill children. Transfusion 2020; 60:2849-2858. [PMID: 32959409 DOI: 10.1111/trf.16094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
The safety of platelet (PLT) concentrates with longer storage duration has been questioned due to biochemical and functional changes that occur during blood collection and storage. Some studies have suggested that transfusion efficacy is decreased and immune system dysfunction is worsened with increased storage age. We sought to describe the effect of PLT storage age on laboratory and clinical outcomes in critically ill children receiving PLT transfusions. STUDY DESIGN AND METHODS We performed a secondary analysis of a prospective, observational point-prevalence study. Children (3 days to 16 years of age) from 82 pediatric intensive care units in 16 countries were enrolled if they received a PLT transfusion during one of the predefined screening weeks. Outcomes (including PLT count increments, organ dysfunction, and transfusion reactions) were evaluated by PLT storage age. RESULTS Data from 497 patients were analyzed. The age of the PLT transfusions ranged from 1 to 7 days but the majority were 4 (24%) or 5 (36%) days of age. Nearly two-thirds of PLT concentrates were transfused to prevent bleeding. The indication for transfusion did not differ between storage age groups (P = .610). After patient and product variables were adjusted for, there was no association between storage age and incremental change in total PLT count or organ dysfunction scoring. A significant association between fresher storage age and febrile transfusion reactions (P = .002) was observed. CONCLUSION The results in a large, diverse cohort of critically ill children raise questions about the impact of storage age on transfusion and clinical outcomes which require further prospective evaluation.
Collapse
Affiliation(s)
- Marianne E Nellis
- Pediatric Critical Care Medicine, NY Presbyterian Hospital-Weill Cornell Medicine, New York, New York
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care, Washington University in St Louis, St Louis, Missouri
| | - Marisa Tucci
- Pediatric Intensive Care Unit, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Simon J Stanworth
- Transfusion Medicine, NHS Blood and Transplant, Oxford, UK.,Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, UK
| | - Marie E Steiner
- Divisions of Pediatric Critical Care and Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, Minnesota
| | | | - Peter J Davis
- Paediatric Intensive Care Unit, Bristol Royal Hospital for Children, Bristol, UK
| | - Oliver Karam
- Division of Pediatric Critical Care Medicine, Children's Hospital of Richmond at VCU, Richmond, Virginia
| | | |
Collapse
|
8
|
Personalised Transfusion Medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:255-257. [PMID: 31385798 PMCID: PMC6683867 DOI: 10.2450/2018.0142-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|