1
|
Mair J, Jaffe A, Lindahl B, Mills N, Möckel M, Cullen L, Giannitsis E, Hammarsten O, Huber K, Krychtiuk K, Mueller C, Thygesen K. The clinical approach to diagnosing peri-procedural myocardial infarction after percutaneous coronary interventions according to the fourth universal definition of myocardial infarction - from the study group on biomarkers of the European Society of Cardiology (ESC) Association for Acute CardioVascular Care (ACVC). Biomarkers 2022; 27:407-417. [PMID: 35603440 PMCID: PMC9344934 DOI: 10.1080/1354750x.2022.2055792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE This review intends to illustrate basic principles on how to apply the Fourth Universal Definition of Myocardial Infarction (UDMI) for the diagnosis of peri-procedural myocardial infarction (MI) after percutaneous coronary interventions (PCI) in clinical practice. METHODS AND RESULTS Review of routine case-based events. Increases in cardiac troponin (cTn) concentrations are common after elective PCI in patients with chronic coronary syndrome (CCS). Peri-procedural PCI-related MI (type 4a MI) in CCS patients should be diagnosed in cases of major peri-procedural acute myocardial injury indicated by an increase in cTn concentrations of >5-times the 99th percentile upper reference limit (URL) together with evidence of new peri-procedural myocardial ischaemia as demonstrated by electrocardiography (ECG), imaging, or flow-limiting peri-procedural complications in coronary angiography. Measurement of cTn baseline concentrations before elective PCI is useful. In patients presenting with acute MI undergoing PCI, peri-procedural increases in cTn concentrations are usually due to their index presentation and not PCI-related, apart from obvious major peri-procedural complications, such as persistent occlusion of a large side branch or no-reflow after stent implantation. CONCLUSION The distinction between type 4a MI, PCI-related acute myocardial injury, and chronic myocardial injury can be challenging in individuals undergoing PCI. Careful integration of all available clinical data is essential for correct classification.
Collapse
Affiliation(s)
- Johannes Mair
- Department of Internal Medicine III – Cardiology and Angiology, Heart Center, Medical University Innsbruck, Innsbruck, Austria
| | - Allan Jaffe
- Mayo Clinic and Medical School, Rochester, MN, USA
| | - Bertil Lindahl
- Department of Medical Sciences, Uppsala University and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Nicholas Mills
- University/BHF Centre for Cardiovascular Science and Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Martin Möckel
- Division of Emergency Medicine and Department of Cardiology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Louise Cullen
- Emergency and Trauma Center, Royal Brisbane and Women`s Hospital, University of Queensland, Queensland, Australia
| | - Evangelos Giannitsis
- Medizinische Klinik III, Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Ola Hammarsten
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kurt Huber
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen Hospital, and Sigmund Freud University Medical School, Vienna, Austria
| | - Konstantin Krychtiuk
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Kristian Thygesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Bulluck H, Paradies V, Barbato E, Baumbach A, Bøtker HE, Capodanno D, De Caterina R, Cavallini C, Davidson SM, Feldman DN, Ferdinandy P, Gili S, Gyöngyösi M, Kunadian V, Ooi SY, Madonna R, Marber M, Mehran R, Ndrepepa G, Perrino C, Schüpke S, Silvain J, Sluijter JPG, Tarantini G, Toth GG, Van Laake LW, von Birgelen C, Zeitouni M, Jaffe AS, Thygesen K, Hausenloy DJ. Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2021; 42:2630-2642. [PMID: 34059914 PMCID: PMC8282317 DOI: 10.1093/eurheartj/ehab271] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/19/2020] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
A substantial number of chronic coronary syndrome (CCS) patients undergoing percutaneous coronary intervention (PCI) experience periprocedural myocardial injury or infarction. Accurate diagnosis of these PCI-related complications is required to guide further management given that their occurrence may be associated with increased risk of major adverse cardiac events (MACE). Due to lack of scientific data, the cut-off thresholds of post-PCI cardiac troponin (cTn) elevation used for defining periprocedural myocardial injury and infarction, have been selected based on expert consensus opinions, and their prognostic relevance remains unclear. In this Consensus Document from the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI), we recommend, whenever possible, the measurement of baseline (pre-PCI) cTn and post-PCI cTn values in all CCS patients undergoing PCI. We confirm the prognostic relevance of the post-PCI cTn elevation >5× 99th percentile URL threshold used to define type 4a myocardial infarction (MI). In the absence of periprocedural angiographic flow-limiting complications or electrocardiogram (ECG) and imaging evidence of new myocardial ischaemia, we propose the same post-PCI cTn cut-off threshold (>5× 99th percentile URL) be used to define prognostically relevant ‘major’ periprocedural myocardial injury. As both type 4a MI and major periprocedural myocardial injury are strong independent predictors of all-cause mortality at 1 year post-PCI, they may be used as quality metrics and surrogate endpoints for clinical trials. Further research is needed to evaluate treatment strategies for reducing the risk of major periprocedural myocardial injury, type 4a MI, and MACE in CCS patients undergoing PCI.
Collapse
Affiliation(s)
- Heerajnarain Bulluck
- Department of Cardiology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk, NR4 7UY, UK.,Norwich Medical School, Bob Champion Research and Educational Building, Rosalind Franklin Road, University of East Anglia, Norwich Research Park. Norwich, Norfolk, NR4 7UQ, United Kingdom
| | - Valeria Paradies
- Cardiology Department, Maasstad Hospital, Maasstadweg 21, 3079 DZ Rotterdam, The Netherlands
| | - Emanuele Barbato
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 8013, Naples, Italy.,Cardiovascular Center Aalst OLV Hospital, Moorselbaan n. 164, 9300 Aalst, Belgium
| | - Andreas Baumbach
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, Barts Heart Centre, Charterhouse Square, London, EC1M 6BQ, UK.,Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Via Santa Sofia 78, 95100 Catania, Italy
| | - Raffaele De Caterina
- Department of Pathology, Cardiology Division, University of Pisa, Lungarno Antonio Pacinotti, 43, 56124 Pisa, Italy.,University of Pisa, and Cardiology Division, Pisa University Hospital AND Fondazione VillaSerena per la Ricerca, Città Sant'Angelo, Pescara, Italy
| | - Claudio Cavallini
- Department of Cardiology, Santa Maria della Misericordia Hospital, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews London, WC1E 6HX, UK
| | - Dmitriy N Feldman
- Division of Cardiology, Weill Cornell Medical College, New York Presbyterian Hospital, 1414 York Ave, New York, NY 10021, USA
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad tér 4, Budapest, 1089 Hungary.,Pharmahungary Group, Hajnóczy u. 6, Szeged, 6722 Hungary
| | - Sebastiano Gili
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Via Carlo Parea, 4, 20138 Milano MI, Italy
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria
| | - Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, M4:146 4th Floor William Leech Building, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, UK.,Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cardiothoracic centre, High Heaton, Newcastle upon Tyne, NE7 7DN, UK
| | - Sze-Yuan Ooi
- Eastern Heart Clinic, Prince of Wales Hospital, Barker St, Randwick NSW 2031, Australia
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Lungarno Antonio Pacinotti, 43, 56124 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, 77060 Houston, TX, USA
| | - Michael Marber
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, St. Thomas' Hospital Campus, King's College London, Westminster Bridge Rd, London SE1 7EH, UK
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Clinical Trials Center, Cardiovascular Research Foundation, 1700 Broadway, New York, NY 10019, USA
| | - Gjin Ndrepepa
- Deutsches Herzzentrum München, Technische Universität, Lazarettstraße 36, 80636 München, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 8013, Naples, Italy
| | - Stefanie Schüpke
- Deutsches Herzzentrum München, Lazarettstr. 36, 80636 Munich, Germany
| | - Johanne Silvain
- Sorbonne Université, ACTION Study Group, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), INSERM UMRS, Paris 1166, France
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Giuseppe Tarantini
- Interventional Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2 - 35128 Padova, Italy
| | - Gabor G Toth
- University Heart Center Graz, Division of Cardiology, Department of Medicine, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3574 CX Utrecht, The Netherlands
| | - Clemens von Birgelen
- Department of Cardiology, Thoraxcentrum Twente, Medisch Spectum Twente, Koningstraat 1, 7512 KZ Enschede, The Netherlands.,Department of Health Technology and Services Research, Faculty BMS, Technical Medical Centre, University of Twente, Hallenweg 5, 7522 NH Enschede, The Netherlands
| | - Michel Zeitouni
- Sorbonne Université, ACTION Study Group, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), INSERM UMRS, Paris 1166, France
| | - Allan S Jaffe
- Departments of Cardiology and Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Kristian Thygesen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews London, WC1E 6HX, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, Singapore 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
4
|
Xu Y, Yu Q, Yang J, Yuan F, Zhong Y, Zhou Z, Wang N. Acute Hemodynamic Effects of Remote Ischemic Preconditioning on Coronary Perfusion Pressure and Coronary Collateral Blood Flow in Coronary Heart Disease. ACTA CARDIOLOGICA SINICA 2018; 34:299-306. [PMID: 30065567 PMCID: PMC6066945 DOI: 10.6515/acs.201807_34(4).20180317a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/17/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND The aim of this study was to assess the acute hemodynamic effects of remote ischemic preconditioning (RIPC) on coronary perfusion pressure and coronary collateral blood flow. METHODS A total of 17 patients with coronary heart disease with severe (70%-85%) stenosis in one or two vessels confirmed by angiography were enrolled into this study. They were randomly divided into the RIPC group (9 patients) and the control group (8 patients). Distal pressure of coronary artery stenosis before balloon dilation (non-occlusive pressure, Pn-occl) and distal coronary artery occlusive pressure (Poccl) during balloon dilation occlusion were measured in all patients. The patients in the RIPC group received three cycles of lower limb ischemia-reperfusion preconditioning (5 minutes inflation of a blood pressure cuff, followed by 5 minutes reperfusion). For controls, the cuff was not inflated. After this process, Pn-occl and Poccl were measured again in each patient. RESULTS There were no significant differences in angiographic characteristics between the two groups (all p > 0.05). Troponin I (TNI) levels after percutaneous coronary intervention (PCI) were lower in the RIPC group than in the control group (p = 0.004). In the RIPC group, mean Pn-occl and Poccl were significantly increased after RIPC compared to before RIPC [(72.78 ± 10.10) mmHg vs. (79.67 ± 9.79) mmHg, p = 0.002, (20.89 ± 8.61) mmHg vs. (26.78 ± 10.73) mmHg, p = 0.001, respectively]. CONCLUSIONS RIPC can improve distal coronary perfusion pressure and rapidly increase distal coronary occlusive pressure thereby improving coronary collateral blood flow.
Collapse
Affiliation(s)
- Yuansheng Xu
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Qinkai Yu
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Jianmin Yang
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Fang Yuan
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Yigang Zhong
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Zhanlin Zhou
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Ningfu Wang
- Department of Cardiology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou, 310006, China
| |
Collapse
|
5
|
Krasniqi X, Berisha B, Gashi M, Koçinaj D, Jashari F, Vincelj J. Influence of apelin-12 on troponin levels and the rate of MACE in STEMI patients. BMC Cardiovasc Disord 2017; 17:195. [PMID: 28728608 PMCID: PMC5520283 DOI: 10.1186/s12872-017-0633-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND During acute myocardial infarction, phosphorylated TnI levels, Ca2+ sensitivity and ATPase activity are decreased in the myocardium, and the subsequent elevation in Ca2+ levels activates protease I (caplain I), leading to the proteolytic degradation of troponins. Concurrently, the levels of apelin and APJ expression are increased by limiting myocardial injury. METHODS In this prospective observational study, 100 consecutive patients with ST-elevation acute myocardial infarction were included. Patients meeting the following criteria were included in our study: (1) continuous chest pain lasting for >30 min, (2) observation of ST-segment elevation of more than 2 mm in two adjacent leads by electrocardiography (ECG), (3) increased cardiac troponin I levels, and (4) patients who underwent reperfusion therapy. We evaluated the levels of apelin-12 and troponin I on the first and seventh days after reperfusion therapy in all patients. RESULTS Apelin-12 was inversely correlated with troponin I levels (Spearman's correlation = -0.40) with a p value <0.001. There was variability in the apelin values on the seventh day (Kruskal-Wallis test) based on major adverse cardiac events (MACE) (p = 0.012). Using ROC curve analyses, a cut-off value of >2.2 for the association of apelin with MACE was determined, and the AUC was 0.71 (95% CI, 0.58-0.84). Survival analysis using the Kaplan-Meier method showed a lower rate of MACE among patients with apelin levels >2.2 (p = 0.002), and the ROC curve analysis showed a statistically significant difference in the area under the curve (p = 0.004). CONCLUSION The influence of apelin levels on troponin levels in the acute phase of STEMI is inversely correlated, whereas in the non-acute phase, low apelin values were associated with a high rate of MACE.
Collapse
Affiliation(s)
- Xhevdet Krasniqi
- University Clinical Center of Kosova, Mother Theresa n.n, 10000, Prishtina, Republic of Kosovo.
| | - Blerim Berisha
- University Clinical Center of Kosova, Mother Theresa n.n, 10000, Prishtina, Republic of Kosovo
| | - Masar Gashi
- University Clinical Center of Kosova, Mother Theresa n.n, 10000, Prishtina, Republic of Kosovo
| | - Dardan Koçinaj
- University Clinical Center of Kosova, Mother Theresa n.n, 10000, Prishtina, Republic of Kosovo
| | - Fisnik Jashari
- University Clinical Center of Kosova, Mother Theresa n.n, 10000, Prishtina, Republic of Kosovo
| | - Josip Vincelj
- Clinical Hospital Dubrava, Zagreb, Republic of Croatia
| |
Collapse
|
6
|
Ferreira RM, de Souza E Silva NA, Salis LHA, da Silva RRM, Maia PD, Horta LFB, Salles EF, Nunes HMP, de Oliveira JBM, Domingues YPDS, de Sousa CCM. Troponin I elevation and all-cause mortality after elective percutaneous coronary interventions. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2017; 18:255-260. [PMID: 28131744 DOI: 10.1016/j.carrev.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/30/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND/PURPOSE Although troponin I (TnI) elevation and myocardial injury after percutaneous coronary interventions (PCI) are frequent findings, their prognoses remain controversial. We aimed to determine the association between any or ≥5 times TnI elevation after elective PCI and subsequent one year mortality rates and long term survival. METHODS Consecutive patients admitted for elective PCI between January 2013 and December 2014 were retrospectively analyzed by chart review in two hospitals in Rio de Janeiro. Only patients with post-PCI TnI measurements were included. Clinical, angiographic and procedural characteristics were correlated with any or ≥5 times TnI elevation, as well as 1year mortality and long term survival. RESULTS A total of 407 interventions were included in the analysis. Post-PCI TnI elevation was observed in 74.7% of cases and ≥5 times elevations occurred in 41.3%. Age≥70years, female gender and multistenting were predictors of enzyme elevation. Prior aspirin or hypoglycemic therapy were protective factors. One year mortality was significantly associated with any TnI elevation (6.6% vs 1.05%, p=0.035) and values ≥5 times above the normal limit predicted the highest mortality rates (8.13% vs 3.14%, p=0.031). Survival of patients with single vessel disease was also adversely affected by ≥5 times enzyme elevation (log-rank: p=0.039). CONCLUSION Troponin I elevation after elective PCI is frequent and associated with progressively higher mortality rates at 1year. A cutoff value ≥5 times the 99th percentile, currently defined as myocardial injury, appears to be an even more significant predictor of this outcome, even in lower risk subgroups.
Collapse
Affiliation(s)
- Roberto Muniz Ferreira
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913; Samaritano Hospital, Cardiology Department, Rua Bambina 98, Botafogo, Rio de Janeiro, RJ, Brazil, 22251-050.
| | - Nelson Albuquerque de Souza E Silva
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Lúcia Helena Alvares Salis
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Rafael Ramos Mendes da Silva
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Paula Dias Maia
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Lucas Felipe Bastos Horta
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Eliene Ferreira Salles
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Henrique Moraes Pinto Nunes
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Joana Beatriz Moutinho de Oliveira
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Yasminne Pascoal de Sousa Domingues
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| | - Clarissa Castrighini Macedo de Sousa
- Federal University of Rio de Janeiro, Edson Saad Heart Institute, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, 21941-913
| |
Collapse
|