1
|
Długosz D, Surdacki A, Zawiślak B, Bartuś S, Chyrchel B. Impaired Left Ventricular Circumferential Midwall Systolic Performance Appears Linked to Depressed Preload, but Not Intrinsic Contractile Dysfunction or Excessive Afterload, in Paradoxical Low-Flow/Low-Gradient Severe Aortic Stenosis. J Clin Med 2022; 11:2873. [PMID: 35628998 PMCID: PMC9144151 DOI: 10.3390/jcm11102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Paradoxical low-flow/low-gradient aortic stenosis (P-LFLG-AS) occurs in about one-third of patients with severe AS and preserved left ventricular (LV) ejection fraction (EF). Our aim was to differentiate between altered LV loading conditions and contractility as determinants of subtle LV systolic dysfunction in P-LFLG-AS. We retrospectively analyzed medical records of patients with isolated severe degenerative AS and preserved EF (30 subjects with P-LFLG-AS and 30 patients with normal-flow/high-gradient severe AS (NFHG-AS)), without relevant coexistent diseases (e.g., diabetes, coronary artery disease and chronic kidney disease) or any abnormalities which could account for a low-flow state. Patients with P-LFLG-AS and NFHG-AS did not differ in aortic valve area index and most clinical characteristics. Compared to NFHG-AS, subjects with P-LFLG-AS exhibited smaller LV end-diastolic diameter (LVd) (44 ± 5 vs. 54 ± 5 mm, p < 0.001) (consistent with lower LV preload) with pronounced concentric remodeling, higher valvulo-arterial impedance (3.8 ± 1.1 vs. 2.2 ± 0.5 mmHg per mL/m2, p < 0.001) and diminished systemic arterial compliance (0.45 ± 0.11 vs. 0.76 ± 0.23 mL/m2 per mmHg, p < 0.001), while circumferential end-systolic LV midwall stress (cESS), an estimate of afterload at the LV level, was similar in P-LFLG-AS and NFHG-AS (175 ± 83 vs. 198 ± 69 hPa, p = 0.3). LV midwall fractional shortening (mwFS) was depressed in P-LFLG-AS vs. NFHG-AS (12.3 ± 3.5 vs. 14.7 ± 2.9%, p = 0.006) despite similar EF (61 ± 6 vs. 59 ± 8%, p = 0.4). By multiple regression, the presence of P-LFLG-AS remained a significant predictor of lower mwFS compared to NFHG-AS upon adjustment for cESS (β ± SEM: −2.35 ± 0.67, p < 0.001); however, the significance was lost after further correction for LVd (β = −1.10 ± 0.85, p = 0.21). In conclusion, the association of P-LFLG-AS with a lower cESS-adjusted mwFS, an index of afterload-corrected LV circumferential systolic function at the midwall level, appears secondary to a smaller LV end-diastolic cavity size according to the Frank−Starling law. Thus, low LV preload, not intrinsic contractile dysfunction or excessive afterload, may account for impaired LV circumferential midwall systolic performance in P-LFLG-AS.
Collapse
Affiliation(s)
- Dorota Długosz
- Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland; (D.D.); (A.S.); (S.B.)
| | - Andrzej Surdacki
- Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland; (D.D.); (A.S.); (S.B.)
- Second Department of Cardiology, Institute of Cardiology, Jagiellonian University, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| | - Barbara Zawiślak
- Intensive Care Unit, Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland;
| | - Stanisław Bartuś
- Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland; (D.D.); (A.S.); (S.B.)
- Second Department of Cardiology, Institute of Cardiology, Jagiellonian University, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| | - Bernadeta Chyrchel
- Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland; (D.D.); (A.S.); (S.B.)
- Second Department of Cardiology, Institute of Cardiology, Jagiellonian University, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| |
Collapse
|
2
|
Abstract
Aortic stenosis is a heterogeneous disorder. Variations in the pathological and physiological responses to pressure overload are incompletely understood and generate a range of flow and pressure gradient patterns, which ultimately cause varying microvascular effects. The impact of cardiac-coronary coupling depends on these pressure and flow effects. In this article, we explore important concepts concerning cardiac physiology and the coronary microcirculation in aortic stenosis and their impact on myocardial remodeling, aortic valve flow patterns, and clinical progression.
Collapse
Affiliation(s)
- Hannah Z.R. McConkey
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas’ Hospital Campus, London, United Kingdom (H.Z.R.M., M.M., A.C., S.R.R., B.D.P.)
| | - Michael Marber
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas’ Hospital Campus, London, United Kingdom (H.Z.R.M., M.M., A.C., S.R.R., B.D.P.)
| | - Amedeo Chiribiri
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas’ Hospital Campus, London, United Kingdom (H.Z.R.M., M.M., A.C., S.R.R., B.D.P.)
| | - Philippe Pibarot
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart and Lung Institute, Laval University, Québec, Canada (P.P.)
| | - Simon R. Redwood
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas’ Hospital Campus, London, United Kingdom (H.Z.R.M., M.M., A.C., S.R.R., B.D.P.)
| | - Bernard D. Prendergast
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas’ Hospital Campus, London, United Kingdom (H.Z.R.M., M.M., A.C., S.R.R., B.D.P.)
| |
Collapse
|