1
|
Trimarchi G, Pizzino F, Paradossi U, Gueli IA, Palazzini M, Gentile P, Di Spigno F, Ammirati E, Garascia A, Tedeschi A, Aschieri D. Charting the Unseen: How Non-Invasive Imaging Could Redefine Cardiovascular Prevention. J Cardiovasc Dev Dis 2024; 11:245. [PMID: 39195153 DOI: 10.3390/jcdd11080245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a major global health challenge, leading to significant morbidity and mortality while straining healthcare systems. Despite progress in medical treatments for CVDs, their increasing prevalence calls for a shift towards more effective prevention strategies. Traditional preventive approaches have centered around lifestyle changes, risk factors management, and medication. However, the integration of imaging methods offers a novel dimension in early disease detection, risk assessment, and ongoing monitoring of at-risk individuals. Imaging techniques such as supra-aortic trunks ultrasound, echocardiography, cardiac magnetic resonance, and coronary computed tomography angiography have broadened our understanding of the anatomical and functional aspects of cardiovascular health. These techniques enable personalized prevention strategies by providing detailed insights into the cardiac and vascular states, significantly enhancing our ability to combat the progression of CVDs. This review focuses on amalgamating current findings, technological innovations, and the impact of integrating advanced imaging modalities into cardiovascular risk prevention, aiming to offer a comprehensive perspective on their potential to transform preventive cardiology.
Collapse
Affiliation(s)
- Giancarlo Trimarchi
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, 98124 Messina, Italy
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Fausto Pizzino
- Cardiology Unit, Heart Centre, Fondazione Gabriele Monasterio-Regione Toscana, 54100 Massa, Italy
| | - Umberto Paradossi
- Cardiology Unit, Heart Centre, Fondazione Gabriele Monasterio-Regione Toscana, 54100 Massa, Italy
| | - Ignazio Alessio Gueli
- Cardiology Unit, Heart Centre, Fondazione Gabriele Monasterio-Regione Toscana, 54100 Massa, Italy
| | - Matteo Palazzini
- "De Gasperis" Cardio Center, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Piero Gentile
- "De Gasperis" Cardio Center, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Francesco Di Spigno
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Enrico Ammirati
- "De Gasperis" Cardio Center, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Andrea Garascia
- "De Gasperis" Cardio Center, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Andrea Tedeschi
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Daniela Aschieri
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| |
Collapse
|
2
|
Abdul-Rahman T, Dunham A, Huang H, Bukhari SMA, Mehta A, Awuah WA, Ede-Imafidon D, Cantu-Herrera E, Talukder S, Joshi A, Sundlof DW, Gupta R. Chemotherapy Induced Cardiotoxicity: A State of the Art Review on General Mechanisms, Prevention, Treatment and Recent Advances in Novel Therapeutics. Curr Probl Cardiol 2023; 48:101591. [PMID: 36621516 DOI: 10.1016/j.cpcardiol.2023.101591] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
As medicine advances to employ sophisticated anticancer agents to treat a vast array of oncological conditions, it is worth considering side effects associated with several chemotherapeutics. One adverse effect observed with several classes of chemotherapy agents is cardiotoxicity which leads to reduced ejection fraction (EF), cardiac arrhythmias, hypertension and Ischemia/myocardial infarction that can significantly impact the quality of life and patient outcomes. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review comprehensively describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring possible mechanisms for cardiotoxicity observed with anticancer agents could provide valuable insight into susceptibility for developing symptoms and management guidelines. Chemotherapeutics are associated with several side effects. Several classes of chemotherapy agents cause cardiotoxicity leading to a reduced ejection fraction (EF), cardiac arrhythmias, hypertension, and Ischemia/myocardial infarction. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload, and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring mechanisms for cardiotoxicity observed with anticancer agents could provide insight that will guide management.
Collapse
Affiliation(s)
| | - Alden Dunham
- University of South Florida Morsani College of Medicine, FL
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Wireko A Awuah
- Sumy State University, Toufik's World Medical Association, Ukraine
| | | | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, México
| | | | - Amogh Joshi
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Deborah W Sundlof
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| | | |
Collapse
|
3
|
Wei X, Lin L, Zhang G, Zhou X. Cardiovascular Magnetic Resonance Imaging in the Early Detection of Cardiotoxicity Induced by Cancer Therapies. Diagnostics (Basel) 2022; 12:1846. [PMID: 36010197 PMCID: PMC9406931 DOI: 10.3390/diagnostics12081846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The significant progress in cancer treatment, including chemotherapy, immunotherapy, radiotherapy, and combination therapies, has led to higher long-term survival rates in cancer patients, while the cardiotoxicity caused by cancer treatment has become increasingly prominent. Cardiovascular magnetic resonance (CMR) is a non-invasive comprehensive imaging modality that provides not only anatomical information, but also tissue characteristics and cardiometabolic and energetic assessment, leading to its increased use in the early identification of cardiotoxicity, and is of major importance in improving the survival rate of cancer patients. This review focused on CMR techniques, including myocardial strain analysis, T1 mapping, T2 mapping, and extracellular volume fraction (ECV) calculation in the detection of early myocardial injury induced by cancer therapies. We summarized the existing studies and ongoing clinical trials using CMR for the assessment of subclinical ventricular dysfunction and myocardial changes at the tissue level. The main focus was to explore the potential of clinical and preclinical CMR techniques for continuous non-invasive monitoring of myocardial toxicity associated with cancer therapy.
Collapse
Affiliation(s)
| | | | - Guizhi Zhang
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518036, China; (X.W.); (L.L.)
| | - Xuhui Zhou
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518036, China; (X.W.); (L.L.)
| |
Collapse
|
4
|
Bouwer NI, Jager A, Liesting C, Kofflard MJM, Brugts JJ, Kitzen JJEM, Boersma E, Levin MD. Cardiac monitoring in HER2-positive patients on trastuzumab treatment: A review and implications for clinical practice. Breast 2020; 52:33-44. [PMID: 32361151 PMCID: PMC7375662 DOI: 10.1016/j.breast.2020.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Trastuzumab prolongs progression-free and overall survival in patients with human epidermal growth factor receptor 2 (HER2) positive breast cancer. However, trastuzumab treatment is hampered by cardiotoxicity, defined as a left ventricular ejection fraction (LVEF) decline with a reported incidence ranging from 3 to 27% depending on variable factors. Early identification of patients at increased risk of trastuzumab-induced myocardial damage is of great importance to prevent deterioration to irreversible cardiotoxicity. Although current cardiac monitoring with multi gated acquisition (MUGA) scanning and/or conventional 2D-echocardiography (2DE) have a high availability, their reproducibility are modest, and more sensitive and reliable techniques are needed such as 3D-echocardiography (3DE) and speckle tracking echocardiography (STE). But which other diagnostic imaging modalities are available for patients before and during trastuzumab treatment? In addition, what is the optimal frequency and duration of cardiac monitoring? At last, which biomarker monitoring strategies are currently available for the identification of cardiotoxicity in patients treated with trastuzumab?
Collapse
Affiliation(s)
- Nathalie I Bouwer
- Department of Cardiology, Albert Schweitzer Hospital, Albert Schweitzerplaats 25, 3300 AK, Dordrecht, the Netherlands; Department of Internal Medicine, Albert Schweitzer Hospital, Albert Schweitzerplaats 25, 3300 AK, Dordrecht, the Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3000 CA, Rotterdam, the Netherlands
| | - Crista Liesting
- Department of Cardiology, Albert Schweitzer Hospital, Albert Schweitzerplaats 25, 3300 AK, Dordrecht, the Netherlands
| | - Marcel J M Kofflard
- Department of Cardiology, Albert Schweitzer Hospital, Albert Schweitzerplaats 25, 3300 AK, Dordrecht, the Netherlands
| | - Jasper J Brugts
- Department of Cardiology, Erasmus MC Thoraxcenter, Dr. Molewaterplein 40, 3000 CA, Rotterdam, the Netherlands
| | - Jos J E M Kitzen
- Department of Internal Medicine, Albert Schweitzer Hospital, Albert Schweitzerplaats 25, 3300 AK, Dordrecht, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC Thoraxcenter, Dr. Molewaterplein 40, 3000 CA, Rotterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Albert Schweitzerplaats 25, 3300 AK, Dordrecht, the Netherlands.
| |
Collapse
|
5
|
Abstract
The era of modern oncology incorporates an ever-evolving personalized approach to hematological malignancies and solid tumors. As a result, patient survival rates have, in part, substantially improved, depending on the specific type of underlying malignancy. However, systemic therapies may come along with potential cardiotoxic effects resulting in heart failure with increased morbidity and mortality. Ultimately, patients may survive their malignancy but die as a result of cancer treatment. Cardiovascular magnetic resonance imaging has long been in use for the assessment of function and tissue characteristics in patients with various nonischemic cardiac diseases. Besides an introductory overview on the general definition of cardiotoxicity including potential underlying mechanisms, this review provides insight into the application of various cardiovascular magnetic resonance imaging techniques in the setting of cancer therapy-related cardiac and vascular toxicity. Early identification of cardiotoxic effects may allow for on-time therapy adjustment and/or cardioprotective measures to avoid subsequent long-term heart failure with increased mortality.
Collapse
|
6
|
Cadeddu Dessalvi C, Deidda M, Giorgi M, Colonna P. Vascular Damage - Coronary Artery Disease. J Cardiovasc Echogr 2020; 30:S11-S16. [PMID: 32566461 PMCID: PMC7293870 DOI: 10.4103/jcecho.jcecho_3_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular complications during chemotherapy and radiotherapy are becoming an increasing problem because many patients with cancer are treated with agents that exert significant vascular toxicity. Coronary heart disease in patients with cancer presents particular challenges, which directly impact the management of both the coronary disease and malignancy. Several chemotherapeutic agents have been shown to trigger ischemic heart disease, and as it has happened for myocardial cardiotoxicity, more attention should be dedicated to improving early recognition and prevention of cardiac vascular toxicity. Cardiac imaging could facilitate early detection of vascular toxicity, but a thorough risk stratification should always be performed to identify patients at higher risk of vascular impairment.
Collapse
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mauro Giorgi
- Department of Cardiology, University Hospital Città della Scienza e Salute, Molinette Hospital, Turin, Italy
| | - Paolo Colonna
- Department of Cardiology, Hospital Policlinico of Bari, Bari, Italy
| |
Collapse
|
7
|
Novo G, Nugara C, Fava A, Mantero A, Citro R. Early Detection of Myocardial Damage: A Multimodality Approach. J Cardiovasc Echogr 2020; 30:S4-S10. [PMID: 32566460 PMCID: PMC7293866 DOI: 10.4103/jcecho.jcecho_2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/17/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are possible complications of antineoplastic treatment and may lead to premature morbidity and mortality among cancer survivors. A symptom-based follow-up is ineffective, and there are growing evidences that early detection of myocardial damage in patients treated with antineoplastic drugs is the key point to prevent the occurrence of damage and improve the prognosis of these patients. Different techniques have been proposed to monitor cardiac function in oncologic patients such as cardiac imaging (echocardiography, nuclear imaging, and cardiac magnetic resonance) and biomarkers (troponin and natriuretic peptides). The European Association of Cardiovascular Imaging/American Society of Echocardiography consensus document encourages an integrated approach to early detect cardiotoxicity.
Collapse
Affiliation(s)
- Giuseppina Novo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Division of Cardiology University Hospital P. Giaccone, Palermo, Italy
| | - Cinzia Nugara
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Division of Cardiology University Hospital P. Giaccone, Palermo, Italy
- Neurolesi Center IRCCS “Bonino Pulejo”, Messina, Italy
| | - Antonella Fava
- Department of Cardiology, University Hospital “Città della Salute e Della Scienza”, Molinette Hospital, Turin, Italy
| | | | - Rodolfo Citro
- Heart Department, University Hospital of Salerno, Salerno, Italy
| |
Collapse
|
8
|
Citro R, Monte IP. Cardiac Imaging in Cardio-oncology: An Ongoing Challenging. J Cardiovasc Echogr 2020; 30:S1-S3. [PMID: 32566459 PMCID: PMC7293867 DOI: 10.4103/jcecho.jcecho_1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/23/2019] [Accepted: 10/04/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- Rodolfo Citro
- Department of Heart, University Hospital of Salerno, Salerno, Sicily, Italy
| | - Ines Paola Monte
- Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Sicily, Italy
| |
Collapse
|
9
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Cadeddu Dessalvi C, Deidda M, Mele D, Bassareo PP, Esposito R, Santoro C, Lembo M, Galderisi M, Mercuro G. Chemotherapy-induced cardiotoxicity. J Cardiovasc Med (Hagerstown) 2018; 19:315-323. [DOI: 10.2459/jcm.0000000000000667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Abstract
Management of cardiovascular disease in patients with cancer and cancer survivors requires particular clinical expertise and skills that are central to cardio-oncology. The areas of knowledge required include specific cardiovascular complications directly related to oncologic therapies and the impact of cancer and its therapies on existing or potential cardiovascular comorbidities. Many cancer therapeutics have potential cardiotoxicity. The conversion of many cancers to chronic conditions, rather than fatal diseases, has produced a population of patients with cancer at high risk for cardiovascular diseases that require specialized knowledge of treating physicians. Thus, there is a compelling need for enhanced cardio-oncology training.
Collapse
|
12
|
Simoni LJC, Brandão SCS. New Imaging Methods for Detection of Drug-Induced Cardiotoxicity in Cancer Patients. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9415-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|