1
|
Mo L, Sia C, Lin W, Zheng X, Peng K. Describing and Mapping the Research Trend of Scientific Publications on Arrhythmogenic Right Ventricular Cardiomyopathy Across Four Decades: A Bibliometric Analysis. Clin Cardiol 2024; 47:e70051. [PMID: 39600076 PMCID: PMC11599429 DOI: 10.1002/clc.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES To perform a bibliometric analysis of publications of arrhythmogenic right ventricular cardiomyopathy (ARVC) from 1981 to 2023 to summarize the current publications and explore frontiers on this topic. METHODS We integrated the scientific publications on ARVC in the Web of Science (WOS) Core Collection database from January 1981 to September 2023, using the retrieval strategy of medical subject headings combined with keywords. We focused on articles and reviews that were published in English. Relevant information such as the journal and publisher, the title, authors, organizations, abstract, keywords, published date, and number of citations, were collected. Bibliometric analysis was performed and visualized by the R software and Microsoft Excel. RESULTS The results revealed a total of 4792 records related to ARVC from the WOS database, and 2992 original articles or reviews which were selected for bibliometric analysis. There were 79 countries and regions, 3724 research institutions, and 12 157 scholars who have published in this topic. The number of scientific publications of ARVC increased year-by-year, with an annual growth rate of 12.12%. We also investigated the top 10 contributing countries, organizations with affiliations, most influential researchers, highest-cited articles, and highest-frequency keywords. In addition, the most active areas of research on ARVC included that of fatal complications, molecular pathological mechanisms, diagnosis, therapy, and prognosis respectively according to the keywords trend analysis. CONCLUSIONS Our study reports the publication landscape of ARVC during the past four decades based on bibliometric analysis. This study provides a deeper understanding of the published literature on ARVC.
Collapse
Affiliation(s)
- Leitong Mo
- Department of Coronary Care UnitMaoming People's HospitalMaomingGuangdongChina
| | - Ching‐Hui Sia
- Department of CardiologyNational University Heart Centre SingaporeSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Weiqin Lin
- Department of CardiologyNational University Heart Centre SingaporeSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Xifeng Zheng
- Department of Internal MedicineHospital of Guangdong University of TechnologyGuangzhouGuangdongChina
| | - Kaiyi Peng
- Department of Critical Care MedicineMaoming People's HospitalMaomingGuangdongChina
| |
Collapse
|
2
|
Al Jarallah M, Refat H, Loricchio ML, Dashti R, Brady PA, Rajan R, Talera B. Arrhythmogenic right ventricular cardiomyopathy mimicking Brugada - a case report. Ann Med Surg (Lond) 2023; 85:5035-5038. [PMID: 37811015 PMCID: PMC10553056 DOI: 10.1097/ms9.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 10/10/2023] Open
Abstract
We report a rare case of arrhythmogenic right ventricular cardiomyopathy (ARVC). Middle-aged Kuwaiti gentleman presented to a polyclinic with complaints of dizziness and palpitation. Electrocardiogram (ECG) at the polyclinic showed polymorphic ventricular tachycardia, and hence he was referred to our center. ECG at the emergency room showed a Brugada pattern with epsilon waves. Echo showed right ventricular dysfunction with pulmonary arterial hypertension. Magnetic resonance imaging showed evidence of ARVC. He was referred to the electrophysiology team and implanted an implantable cardioverter-defibrillator electively.
Collapse
Affiliation(s)
- Mohammed Al Jarallah
- Department of Cardiology, Sabah Al Ahmad Cardiac Center, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Hany Refat
- Department of Cardiology, Sabah Al Ahmad Cardiac Center, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Maria L. Loricchio
- Department of Cardiology, Sabah Al Ahmad Cardiac Center, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Raja Dashti
- Department of Cardiology, Sabah Al Ahmad Cardiac Center, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Peter A. Brady
- Department of Cardiology, Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Rajesh Rajan
- Department of Cardiology, Sabah Al Ahmad Cardiac Center, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Bhavesh Talera
- Department of Internal Medicine, Ivy Superspeciality Hospital, Sector 71, Mohali, Chandigarh, India
| |
Collapse
|
3
|
Morcos G, Vashist S, Aktay R. MRI Findings in Desmoplakin-related Arrhythmogenic Left Ventricular Cardiomyopathy in a Pediatric Patient: A Case Report. Radiol Cardiothorac Imaging 2023; 5:e220209. [PMID: 37124635 PMCID: PMC10141448 DOI: 10.1148/ryct.220209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 05/02/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disorder that cannot be explained by ischemic, hypertensive, or valvular heart disease and often results in sudden cardiac death. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is the best-characterized ACM and can be diagnosed using the revised task force criteria. In contrast, there are no accepted clinical diagnostic criteria for arrhythmogenic left ventricular cardiomyopathy (ALVC), another subtype of ACM. Cardiac MRI aids in ARVC diagnosis by delineating biventricular structural and functional abnormalities and can be instrumental in diagnosing ALVC. This report presents a pediatric case of desmoplakin cardiomyopathy, a distinct subtype of ALVC, with findings overlapping myocarditis and LV noncompaction. Keywords: Pediatrics, Heart, Cardiomyopathies Supplemental material is available for this article. © RSNA, 2023.
Collapse
|
4
|
Volani C, Pagliaro A, Rainer J, Paglia G, Porro B, Stadiotti I, Foco L, Cogliati E, Paolin A, Lagrasta C, Frati C, Corradini E, Falco A, Matzinger T, Picard A, Ermon B, Piazza S, De Bortoli M, Tondo C, Philippe R, Medici A, Lavdas AA, Blumer MJF, Pompilio G, Sommariva E, Pramstaller PP, Troppmair J, Meraviglia V, Rossini A. GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. J Cell Mol Med 2022; 26:3687-3701. [PMID: 35712781 PMCID: PMC9258704 DOI: 10.1111/jcmm.17396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro‐fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB‐3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB‐3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.
Collapse
Affiliation(s)
- Chiara Volani
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandra Pagliaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Benedetta Porro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Adolfo Paolin
- Fondazione Banca dei Tessuti di Treviso, Treviso, Italy
| | - Costanza Lagrasta
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Emilia Corradini
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Theresa Matzinger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Benedetta Ermon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Povo, TN, Italy.,Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Marzia De Bortoli
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Claudio Tondo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milano, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy.,Department of Clinical Electrophysiology&Cardiac Pacing, Università degli Studi di Milano, Milano, Italy
| | - Réginald Philippe
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrea Medici
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandros A Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy.,Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
5
|
Kaviarasan V, Mohammed V, Veerabathiran R. Genetic predisposition study of heart failure and its association with cardiomyopathy. Egypt Heart J 2022; 74:5. [PMID: 35061126 PMCID: PMC8782994 DOI: 10.1186/s43044-022-00240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a clinical condition distinguished by structural and functional defects in the myocardium, which genetic and environmental factors can induce. HF is caused by various genetic factors that are both heterogeneous and complex. The incidence of HF varies depending on the definition and area, but it is calculated to be between 1 and 2% in developed countries. There are several factors associated with the progression of HF, ranging from coronary artery disease to hypertension, of which observed the most common genetic cause to be cardiomyopathy. The main objective of this study is to investigate heart failure and its association with cardiomyopathy with their genetic variants. The selected novel genes that have been linked to human inherited cardiomyopathy play a critical role in the pathogenesis and progression of HF. Research sources collected from the human gene mutation and several databases revealed that numerous genes are linked to cardiomyopathy and thus explained the hereditary influence of such a condition. Our findings support the understanding of the genetics aspect of HF and will provide more accurate evidence of the role of changing disease accuracy. Furthermore, a better knowledge of the molecular pathophysiology of genetically caused HF could contribute to the emergence of personalized therapeutics in future.
Collapse
Affiliation(s)
- Vaishak Kaviarasan
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India.
| |
Collapse
|
6
|
Variants in MHY7 Gene Cause Arrhythmogenic Cardiomyopathy. Genes (Basel) 2021; 12:genes12060793. [PMID: 34067482 PMCID: PMC8224781 DOI: 10.3390/genes12060793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Arrhythmogenic Cardiomyopathy (ACM) is a disease of the cardiac muscle, characterized by frequent ventricular arrhythmias and functional/ structural abnormalities, mainly of the right ventricle. To date, 20 different genes have been associated with ACM and the majority of them encode for desmosomal proteins. In this study, we describe the characterization of two novel variants in MHY7 gene, segregating in two ACM families. MYH7 encodes for myosin heavy chain β (MHC-β) isoform, involved in cardiac muscle contractility. METHOD AND RESULTS In family A, the autopsy revealed ACM with biventricular involvement in both the proband and his father. In family B, the proband had been diagnosed as affected by ACM and implanted with implantable cardioverter defibrillator (ICD), due to ECG evidence of monomorphic ventricular tachycardia after syncope. After clinical evaluation, a molecular diagnosis was performed using a NGS custom panel. The two novel variants identified predicted damaging, located in a highly conserved domain: c. 2630T>C is not described while c.2609G>A has a frequency of 0.00000398. In silico analyses evaluated the docking characteristics between proteins using the Haddock2.2 webserver. CONCLUSIONS Our results reveal two variants in sarcomeric genes to be the molecular cause of ACM, further increasing the genetic heterogeneity of the disease; in fact, sarcomeric variants are usually associated with HCM phenotype. Studies on the role of sarcomere genes in the pathogenesis of ACM are surely recommended in those ACM patients negative for desmosomal mutation screening.
Collapse
|
7
|
Leone MP, Palumbo P, Saenen J, Mastroianno S, Castellana S, Amico C, Mazza T, Potenza DR, Petracca A, Castori M, Carella M, Di Stolfo G. Phenotypic Variability of a Pathogenic PKP2 Mutation in an Italian Family Affected by Arrhythmogenic Cardiomyopathy and Juvenile Sudden Death: Considerations From Molecular Autopsy to Sport Restriction. Front Cardiovasc Med 2021; 8:635141. [PMID: 34095246 PMCID: PMC8173114 DOI: 10.3389/fcvm.2021.635141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder with an estimated prevalence between 1:2,000 and 1:5,000 and is characterized by the fibrofatty replacement of cardiomyocytes that predisposes to malignant arrhythmias, heart failure, and sudden cardiac death. The diagnosis is based on the 2010 Task Force Criteria including family history, electrocardiographic traits and arrhythmogenic pattern, specific gene mutations, and structural and/or histological abnormalities. Most ACMs display an autosomal dominant mode of inheritance often with incomplete penetrance and variable expressivity. Genetic screening of patients with ACM identifies pathogenic or likely pathogenic variants, prevalently in genes encoding the cardiac desmosome (PKP2, DSP, DSC2, DSG2, and JUP) or less frequently in non-desmosomal genes (CTNNA3, PLN, TMEM43, RYR2, SCN5A, CDH2, and DES). Methods: In the present study, we performed molecular autopsy in a boy who died suddenly during physical exertion. In addition to post-mortem examination, a DNA sample was analyzed with next-generation sequencing (NGS). Results: The genetic analysis revealed the presence of pathogenic heterozygous c.314del (p.Pro105Leufs*7) frameshift variant in the PKP2 gene. Cascade screening of family members allowed us to identify 12 mutation carriers and to intervene on subjects at risk, many of whom were athletes. Conclusions: Molecular autopsy can establish cardiogenetic diagnosis and allow appropriate preventative measures in high-risk relatives.
Collapse
Affiliation(s)
- Maria Pia Leone
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Johan Saenen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Antwerp, Belgium
| | - Sandra Mastroianno
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatic Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo - Istituto Mendel, Rome, Italy
| | - Cesare Amico
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatic Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo - Istituto Mendel, Rome, Italy
| | - Domenico Rosario Potenza
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Di Stolfo
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Precone V, Krasi G, Guerri G, Madureri A, Piazzani M, Michelini S, Barati S, Maniscalchi T, Bressan S, Bertelli M. Cardiomyopathies. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:32-43. [PMID: 31577251 PMCID: PMC7233648 DOI: 10.23750/abm.v90i10-s.8755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023]
Abstract
The most common cardiomyopathies often present to primary care physicians with similar symptoms, despite the fact that they involve a variety of phenotypes and etiologies (1). Many have signs and symptoms common in heart failure, such as reduced ejection fraction, peripheral edema, fatigue, orthopnea, exertion dyspnea, paroxysmal nocturnal dyspnea, presyncope, syncope and cardiac ischemia (1). In all cardiomyopathies, the cardiac muscle (myocardium) may be structurally and/or functionally impaired. They can be classified as hypertrophic, dilated, left-ventricular non compaction, restrictive and arrhythmogenic right ventricular cardiomyopathies. (www.actabiomedica.it)
Collapse
|
9
|
Poloni G, Calore M, Rigato I, Marras E, Minervini G, Mazzotti E, Lorenzon A, Li Mura IEA, Telatin A, Zara I, Simionati B, Perazzolo Marra M, Ponti J, Occhi G, Vitiello L, Daliento L, Thiene G, Basso C, Corrado D, Tosatto S, Bauce B, Rampazzo A, De Bortoli M. A targeted next-generation gene panel reveals a novel heterozygous nonsense variant in the TP63 gene in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:773-780. [DOI: 10.1016/j.hrthm.2018.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/14/2022]
|
10
|
Martewicz S, Luni C, Serena E, Pavan P, Chen HSV, Rampazzo A, Elvassore N. Transcriptomic Characterization of a Human In Vitro Model of Arrhythmogenic Cardiomyopathy Under Topological and Mechanical Stimuli. Ann Biomed Eng 2018; 47:852-865. [DOI: 10.1007/s10439-018-02134-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022]
|
11
|
De Bortoli M, Postma AV, Poloni G, Calore M, Minervini G, Mazzotti E, Rigato I, Ebert M, Lorenzon A, Vazza G, Cipriani A, Bariani R, Perazzolo Marra M, Husser D, Thiene G, Daliento L, Corrado D, Basso C, Tosatto SC, Bauce B, van Tintelen JP, Rampazzo A. Whole-Exome Sequencing Identifies Pathogenic Variants in
TJP1
Gene Associated With Arrhythmogenic Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e002123. [DOI: 10.1161/circgen.118.002123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Alex V. Postma
- Department of Medical Biology and Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands (A.V.P.)
| | - Giulia Poloni
- Departments of Biology (M.D.B., G.P., M.C., A.L., G.V., A.R.)
| | - Martina Calore
- Departments of Biology (M.D.B., G.P., M.C., A.L., G.V., A.R.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherland (M.C.)
| | | | - Elisa Mazzotti
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Ilaria Rigato
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Micaela Ebert
- Department of Electrophysiology, Heart Center, University of Leipzig, Germany (M.E., D.H.)
- Department of Cardiology, Leiden University Medical Center, The Netherlands (M.E.)
| | | | - Giovanni Vazza
- Departments of Biology (M.D.B., G.P., M.C., A.L., G.V., A.R.)
| | - Alberto Cipriani
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Riccardo Bariani
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Martina Perazzolo Marra
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Daniela Husser
- Department of Electrophysiology, Heart Center, University of Leipzig, Germany (M.E., D.H.)
| | - Gaetano Thiene
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Luciano Daliento
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Domenico Corrado
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Cristina Basso
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - Silvio C.E. Tosatto
- Biomedical Sciences (G.M., S.C.E.T.)
- CNR Institute of Neuroscience, Padua, Italy (S.C.E.T.)
| | - Barbara Bauce
- Cardiac, Thoracic, and Vascular Sciences (E.M., I.R., A.C., R.B., M.P.M.,G.T., L.D., D.C., C.B., B.B.), University of Padua, Italy
| | - J. Peter van Tintelen
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, The Netherlands (J.P.v.T.)
- Department of Genetics, University Medical Center Utrecht, The Netherlands (J.P.v.T.)
| | | |
Collapse
|
12
|
Hall CL, Sutanto H, Dalageorgou C, McKenna WJ, Syrris P, Futema M. Frequency of genetic variants associated with arrhythmogenic right ventricular cardiomyopathy in the genome aggregation database. Eur J Hum Genet 2018; 26:1312-1318. [PMID: 29802319 PMCID: PMC6117313 DOI: 10.1038/s41431-018-0169-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare inherited heart-muscle disorder, which is the most common cause of life-threatening arrhythmias and sudden cardiac death (SCD) in young adults and athletes. Early and accurate diagnosis can be crucial in effective ARVC management and prevention of SCD.The genome Aggregation Database (gnomAD) population of 138,632 unrelated individuals was searched for previously identified ARVC variants, classified as pathogenic or unknown on the disease genetic variant database ( http://www.arvcdatabase.info/ ), in five most-commonly mutated genes: PKP2, DSP, DSG2, DSC2 and JUP, where variants account for 40-50% of all the ARVC cases. Minor allele frequency (MAF) of 0.001 was used to define variants as rare or common.The gnomAD data contained 117/364 (32%) of the previously reported pathogenic and 152/266 (57%) of the unknown ARVC variants. The cross-ethnic analysis of MAF revealed that 11 previously classified pathogenic and 57 unknown variants were common (MAF ≥ 0.001) in at least one ethnic gnomAD population and therefore unlikely to be ARVC causing.After applying our MAF analysis the overall frequency of pathogenic ARVC variants in gnomAD was one in 257 individuals, but a more stringent cut-off (MAF ≥ 0.0001) gave a frequency of one in 845, closer to the estimated phenotypic frequency of the disease.Our study demonstrates that the analysis of large cross-ethnic population sequencing data can significantly improve disease variant interpretation. Higher than expected frequency of ARVC variants suggests that a proportion of ARVC-causing variants may be inaccurately classified, implying reduced penetrance of some variants, and/or a polygenic aetiology of ARVC.
Collapse
Affiliation(s)
- Charlotte L Hall
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Henry Sutanto
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Chrysoula Dalageorgou
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - William John McKenna
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Petros Syrris
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Marta Futema
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK.
| |
Collapse
|
13
|
Sušić L, Baraban V, Vincelj J, Maričić L, Ćatić J, Blažeković R, Manojlović S. Dilemma in clinical diagnosis of right ventricular masses. JOURNAL OF CLINICAL ULTRASOUND : JCU 2017; 45:362-369. [PMID: 27753105 DOI: 10.1002/jcu.22414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/24/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
Detection of an intracardiac mass always represents a clinical challenge. We present a 61-year-old female patient with symptoms of New York Heart Association class III. Two-dimensional transthoracic echocardiography revealed a hypoechogenic mass in the cavity of the dilated right ventricle (RV). Cardiac MRI described a pathologic structure of the RV free wall with pedunculated tumor in its cavity. Three months later, on a repeated echocardiography, there were three individual masses. The patient underwent surgery and the pathohistologic report demonstrated thrombotic masses. During the postoperative period, after reviewing all medical records, the conclusion was arrhythmogenic RV cardiomyopathy. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:362-369, 2017.
Collapse
Affiliation(s)
- Livija Sušić
- Health Centre Osijek, Croatia
- J.J. Strossmayer University, Faculty of Medicine Osijek, Croatia
| | - Vedrana Baraban
- J.J. Strossmayer University, Faculty of Medicine Osijek, Croatia
- University Hospital Centre Osijek, Croatia
| | - Josip Vincelj
- J.J. Strossmayer University, Faculty of Medicine Osijek, Croatia
- University Hospital Dubrava, Zagreb, Croatia
| | - Lana Maričić
- J.J. Strossmayer University, Faculty of Medicine Osijek, Croatia
- University Hospital Centre Osijek, Croatia
| | - Jasmina Ćatić
- J.J. Strossmayer University, Faculty of Medicine Osijek, Croatia
- University Hospital Dubrava, Zagreb, Croatia
| | - Robert Blažeković
- J.J. Strossmayer University, Faculty of Medicine Osijek, Croatia
- University Hospital Dubrava, Zagreb, Croatia
| | - Spomenka Manojlović
- University Hospital Dubrava, Zagreb, Croatia
- University of Zagreb, Faculty of Medicine, Croatia
| |
Collapse
|
14
|
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P, Rampazzo A. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 2017; 8:60640-60655. [PMID: 28948000 PMCID: PMC5601168 DOI: 10.18632/oncotarget.17457] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays essential roles in heart development as well as cardiac tissue homoeostasis in adults. Abnormal regulation of this signaling pathway is linked to a variety of cardiac disease conditions, including hypertrophy, fibrosis, arrhythmias, and infarction. Recent studies on genetically modified cellular and animal models document a crucial role of Wnt/β-catenin signaling in the molecular pathogenesis of arrhythmogenic cardiomyopathy (AC), an inherited disease of intercalated discs, typically characterized by ventricular arrhythmias and progressive substitution of the myocardium with fibrofatty tissue. In this review, we summarize the conflicting published data regarding the Wnt/β-catenin signaling contribution to AC pathogenesis and we report the identification of a new potential therapeutic molecule that prevents myocyte injury and cardiac dysfunction due to desmosome mutations in vitro and in vivo by interfering in this signaling pathway. Finally, we underline the potential function of microRNAs, epigenetic regulatory RNA factors reported to participate in several pathological responses in heart tissue and in the Wnt signaling network, as important modulators of Wnt/β-catenin signaling transduction in AC. Elucidation of the precise regulatory mechanism of Wnt/β-catenin signaling in AC molecular pathogenesis could provide fundamental insights for new mechanism-based therapeutic strategy to delay the onset or progression of this cardiac disease.
Collapse
Affiliation(s)
| | - Martina Calore
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Giulia Poloni
- University of Padua, Department of Biology, Padua, Italy
| | - Leon J De Windt
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Paola Braghetta
- University of Padua, Department of Molecular Medicine, Padua, Italy
| | | |
Collapse
|
15
|
Manolio TA. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio. Atherosclerosis 2016; 253:225-236. [PMID: 27612677 PMCID: PMC5064852 DOI: 10.1016/j.atherosclerosis.2016.08.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
Abstract
Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so.
Collapse
Affiliation(s)
- Teri A Manolio
- Division of Genomic Medicine, National Human Genome Research Institute, 5635 Fishers Lane, Room 4113, MSC 9305, Bethesda MD, USA.
| |
Collapse
|