1
|
De Bartolo A, Angelone T, Rocca C. Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging. Vascul Pharmacol 2025; 158:107462. [PMID: 39805379 DOI: 10.1016/j.vph.2025.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.e., chronic low-grade inflammation-inflammaging), oxidative stress, and mitochondrial dysfunction in aging vascular compartment. We focus on the interplay between these events, which contribute to generating a vicious cycle driving the progressive alterations in vascular structure and function during cardiovascular aging. We also discuss the primary role of senescent endothelial cells and vascular smooth muscle cells, and the potential link between vascular and myeloid cells, in impairing plaque stability and promoting the progression of atherosclerosis. The aim of this summary is to provide potential novel insights into targeting these processes for therapeutic benefit.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
2
|
An G, Lei B, Wang Z, Yang K, Fan D, Li B, Fu K, Fang H, Zhang M, Li L, Zhao Y, Jin X, Du L. Multicenter and multimodal imaging study reveals rare fundus lesions in patients after SARS-CoV-2 infection. Sci Rep 2024; 14:14369. [PMID: 38909148 PMCID: PMC11193808 DOI: 10.1038/s41598-024-65216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
To define the characteristics of fundus manifestations in patients after SARS-CoV-2 infection with multimodal imaging techniques. This is a retrospective multicenter and multimodal imaging study including 90 patients. All patients with a visual complaint occurring immediately after SARS-CoV-2 infection were referred to six clinics between December 2022 and February 2023. Demographic information and the temporal relationship between SARS-CoV-2 infection and visual symptoms were documented. The characteristics of the fundus lesions were evaluated using multimodal imaging. Ninety patients from six hospitals were included in this study, including 24 males (26.67%) and 66 (73.33%) females. Seventy-eight patients (86.66%) (146 eyes) were diagnosed with Acute Macular Neuroretinopathy (AMN). The AMN patients were primarily young women (67.95%). Sixty-eight patients (87.18%) had AMN in both eyes. Thirty-eight eyes (24.36%) included Purtscher or Purtscher-like lesions. optical coherence tomography and infrared retinal photographs can show AMN lesions well. Eleven cases were diagnosed with simple Purtscher or Purtscher-like retinopathy (2 cases, 2.22%), Vogt‒Koyanagi‒Harada (VKH) syndrome or VKH-like uveitis (3 cases, 3.33%), multiple evanescent white-dot syndrome (MEWDS) (2 cases, 2.22%), and rhino-orbital-cerebral mucormycosis (ROCM) (5 cases, 5.56%). After SARS-CoV-2 infection, diversified fundus lesions were evident in patients with visual complaints. In this report, AMN was the dominant manifestation, followed by Purtscher or Purtscher-like retinopathy, MEWDS, VKH-like uveitis, and ROCM.
Collapse
Affiliation(s)
- Guangqi An
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Fundus Diseases, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Lei
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Eye institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Zhili Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kaizhuan Yang
- The Second People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Dongsheng Fan
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Bing Li
- Nanyang Municipal Eye Hospital, Nanyang, Henan, China
| | - Ke Fu
- Department of Ophthalmology, The First Affiliated Hospital of Nanyang Medical College, Nanyang, Henan, China
| | - Haixin Fang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Fundus Diseases, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Fundus Diseases, Zhengzhou University, Zhengzhou, Henan, China.
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Fundus Diseases, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Bonfioli G, Tomasoni D, Metra M, Adamo M. Coronavirus disease 2019 and cardiovascular disease: what we have learnt during the last 2 years. J Cardiovasc Med (Hagerstown) 2022; 23:710-714. [DOI: 10.2459/jcm.0000000000001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Penna C, Trotta F, Cavalli R, Pagliaro P. Nanocarriers Loaded with Oxygen to Improve the Protection of the Heart to be Transplanted. Curr Pharm Des 2021; 28:468-470. [PMID: 34751111 DOI: 10.2174/1381612827666211109112723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
In the case of serious cardiovascular diseases, such as refractory heart failure, heart transplantation is the only possible intervention. Currently, the modes of organ transport in hypothermic cardioplegic solution do not allow the implantation of the heart beyond 4-5 hours from the explant. The heart being an organ with a greater consumption of oxygen and high metabolism than the brain, its transport in hypothermic cardioplegic solutions presents critical issues in terms of time and conservation. An ambitious goal of many researchers and clinicians is to minimize the hypoxia of the explanted heart and extend the permanence time in cardioplegic solution without damage from hypoxia. Adequately oxygenating the explanted organs may extend the usability time of the explanted organ. This challenge has been pursued for years with approaches that are often expensive, risky, and/or difficult to use. We propose to consider oxygenated nanocarriers realizing oxygen for a long time. In this way, it will also be possible to use organs from distant countries with respect to the recipient, thus exceeding the canonical 4-5 hours tolerated up to now. In addition to the lack of oxygen, the transplanted organ can undergo the accumulation of catabolites due to the lack of perfusion during transport. Therefore, nanocarriers can also be perfused in adequate solution during organ transportation. A better oxygenation improving the postoperative recovery of the transplanted heart will improve the recipient's quality of life.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin. Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin. Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin. Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin. Italy
| |
Collapse
|
5
|
Vassiliou AG, Zacharis A, Keskinidou C, Jahaj E, Pratikaki M, Gallos P, Dimopoulou I, Kotanidou A, Orfanos SE. Soluble Angiotensin Converting Enzyme 2 (ACE2) Is Upregulated and Soluble Endothelial Nitric Oxide Synthase (eNOS) Is Downregulated in COVID-19-induced Acute Respiratory Distress Syndrome (ARDS). Pharmaceuticals (Basel) 2021; 14:ph14070695. [PMID: 34358119 PMCID: PMC8308597 DOI: 10.3390/ph14070695] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
A damaged endothelium is an underlying condition of the many complications of COVID-19 patients. The increased mortality risk associated with diseases that have underlying endothelial dysfunction, such as acute respiratory distress syndrome (ARDS), suggests that endothelial (e) nitric oxide synthase (NOS)-derived nitric oxide could be an important defense mechanism. Additionally, intravenous recombinant angiotensin converting enzyme 2 (ACE2) was recently reported as an effective therapy in severe COVID-19, by blocking viral entry, and thus reducing lung injury. Very few studies exist on the prognostic value of endothelium-related protective molecules in severe COVID-19 disease. To this end, serum levels of eNOS, inducible (i) NOS, adrenomedullin (ADM), soluble (s) ACE2 levels, and serum (s) ACE activity were measured on hospital admission in 89 COVID-19 patients, hospitalized either in a ward or ICU, of whom 68 had ARDS, while 21 did not. In our cohort, the COVID-19-ARDS patients had considerably lower eNOS levels compared to the COVID-19 non-ARDS patients. On the other hand, sACE2 was significantly higher in the ARDS patients. iNOS, ADM and sACE activity did not differ. Our results might support the notion of two distinct defense mechanisms in COVID-19-derived ARDS; eNOS-derived nitric oxide could be one of them, while the dramatic rise in sACE2 may also represent an endogenous mechanism involved in severe COVID-19 complications, such as ARDS. These results could provide insight to therapeutical applications in COVID-19.
Collapse
Affiliation(s)
- Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Alexandros Zacharis
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Chrysi Keskinidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Edison Jahaj
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Maria Pratikaki
- Biochemical Department, Evangelismos Hospital, 106 76 Athens, Greece;
| | - Parisis Gallos
- Computational Biomedicine Laboratory, Department of Digital Systems, University of Piraeus, 185 34 Piraeus, Greece;
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
- Correspondence: or ; Tel.: +30-2107235521
| |
Collapse
|