1
|
Bai S, Wang X, Wu H, Chen T, Li X, Zhang L, Li X, Er L, Du R. Cardioprotective effect of anisodamine against ischemia/reperfusion injury through the mitochondrial ATP-sensitive potassium channel. Eur J Pharmacol 2021; 901:174095. [PMID: 33862063 DOI: 10.1016/j.ejphar.2021.174095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022]
Abstract
Previous clinical studies have shown that anisodamine could improve no-reflow phenomenon and prevent reperfusion arrhythmias, but whether this protective effect is related to the antagonism of the M-type cholinergic receptor or other potential mechanisms is uncertain. The aim of the present study was to investigate the role of the mitochondrial ATP-sensitive potassium channel (mitoK ATP ) in cardioprotective effect of anisodamine against ischemia/reperfusion injury. Anisodamine and 5- hydroxydecanoic acid were used to explore the relationship between anisodamine and mitoK ATP . Using a Langendorff isolated heart ischemia/reperfusion injury model, hemodynamic parameters and reperfusion ventricular arrhythmia were evaluated; in addition, changes in myocardial infarct size, cTnI from coronary effluent and myocardial ultrastructure, as well as ATP, MDA and SOD in myocardial tissues, were detected. In the hypoxia/reoxygenation injury model of neonatal rat cardiomyocyte, cTnI release in the culture medium and levels of ATP, MDA and SOD in cardiomyocytes and mitochondrial membrane potential, were analyzed. Overall, anisodamine could significantly improve the hemodynamic indexes of isolated rat heart injured by ischemia/reperfusion, reduce the occurrence of ventricular reperfusion arrhythmia and myocardial infarction area, and improve the ultrastructural damage of myocardium and mitochondria. The in vitro results demonstrated that anisodamine could improve mitochondrial energy metabolism, reduce oxidative stress and stabilize mitochondrial membrane potential. The cardioprotective effects were significantly inhibited by 5-hydroxydecanoic acid. In conclusion, this study suggests that the opening of mitoK ATP could play an important role in the protective effect of anisodamine against myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Shiru Bai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Xuechao Wang
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Haibo Wu
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Tianlei Chen
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Xinning Li
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Lina Zhang
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Xiangming Li
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Lu Er
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Rongpin Du
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
2
|
Danilenko LM, Skachilova SY, Nadezhdin SV, Timokhina A, Shcheblykina OV, Kotelnikova AS. Pharmacological screening of substances with cardioprotective effect in the group of 3-oxypyridine derivatives. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.28414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The search for new compounds with antihypoxic and cardioprotective effects among 3-oxypyridine derivatives is promising.
Research objectives: To study the anti-hypoxic and cardioprotective effects of 3-oxypyridine derivatives.
Materials and methods: The search for compounds with an antihypoxic effect was carried out on blood leukocytes of rats in in vitro. To simulate hypoxia, Oil for Tissue Culture (SAGE) was used, 500 µl of which was applied into wells over a growth medium in order to block gas exchange. The cardioprotective effect of 3-oxypyridine derivatives was studied in the model of coronary-occlusive myocardial infarction (30 minutes of ischemia, 90 minutes of reperfusion). The level of troponin I (Tn I) was determined as a biochemical marker of myocardial damage.
Results and discussion: In the in vitro experiments, when culting white blood cells, the lead compound in the group of 3-oxypyridine derivatives was identified under code LKhT 21–16, which increases the number of viable cells in the presence of hypoxia, surpassing the reference drugs. When confirming the chemical structure of the lead compound, LHT 21–16, a high sensitivity of the NMR spectroscopy method was revealed.
In studying the cardioprotective activity in the model of coronary-occlusive myocardial infarction compound LHT 21–16 exerted a marked cardioprotective effect when reducing the size of the necrotic zone and the level of biochemical marker Tn I.
Conclusions: 3-oxypiridine derivatives have antihypoxic and cardioprotective effects, which shows in a high number of surviving cells in the presence of hypoxia in the in vitro model, a reduced size of the necrotic zone and a reduced level of Tn I in the coronary-occlusive myocardial infarction.
Collapse
|
3
|
Suliman HB, Keenan JE, Piantadosi CA. Mitochondrial quality-control dysregulation in conditional HO-1 -/- mice. JCI Insight 2017; 2:e89676. [PMID: 28194437 DOI: 10.1172/jci.insight.89676] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The heme oxygenase-1 (Hmox1; HO-1) pathway was tested for defense of mitochondrial quality control in cardiomyocyte-specific Hmox1 KO mice (HO-1[CM]-/-) exposed to oxidative stress (100% O2). After 48 hours of exposure, these mice showed persistent cardiac inflammation and oxidative tissue damage that caused sarcomeric disruption, cardiomyocyte death, left ventricular dysfunction, and cardiomyopathy, while control hearts showed minimal damage. After hyperoxia, HO-1(CM)-/- hearts showed suppression of the Pgc-1α/nuclear respiratory factor-1 (NRF-1) axis, swelling, low electron density mitochondria by electron microscopy (EM), increased cell death, and extensive collagen deposition. The damage mechanism involves structurally deficient autophagy/mitophagy, impaired LC3II processing, and failure to upregulate Pink1- and Park2-mediated mitophagy. The mitophagy pathway was suppressed through loss of NRF-1 binding to proximal promoter sites on both genes. These results indicate that cardiac Hmox1 induction not only prevents heme toxicity, but also regulates the timing and registration of genetic programs for mitochondrial quality control that limit cell death, pathological remodeling, and cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Claude A Piantadosi
- Department of Medicine.,Department of Anesthesiology.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Spoelstra-de Man AME, Smit B, Oudemans-van Straaten HM, Smulders YM. Cardiovascular effects of hyperoxia during and after cardiac surgery. Anaesthesia 2015; 70:1307-19. [PMID: 26348878 DOI: 10.1111/anae.13218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
During and after cardiac surgery with cardiopulmonary bypass, high concentrations of oxygen are routinely administered, with the intention of preventing cellular hypoxia. We systematically reviewed the literature addressing the effects of arterial hyperoxia. Extensive evidence from pre-clinical experiments and clinical studies in other patient groups suggests predominant harm, caused by oxidative stress, vasoconstriction, perfusion heterogeneity and myocardial injury. Whether these alterations are temporary and benign, or actually affect clinical outcome, remains to be demonstrated. In nine clinical cardiac surgical studies in low-risk patients, higher oxygen targets tended to compromise cardiovascular function, but did not affect clinical outcome. No data about potential beneficial effects of hyperoxia, such as reduction of gas micro-emboli or post-cardiac surgery infections, were reported. Current evidence is insufficient to specify optimal oxygen targets. Nevertheless, the safety of supraphysiological oxygen suppletion is unproven. Randomised studies with a variety of oxygen targets and inclusion of high-risk patients are needed to identify optimal oxygen targets during and after cardiac surgery.
Collapse
Affiliation(s)
| | - B Smit
- Department of Intensive Care, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Y M Smulders
- Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Lu X, Bi YW, Chen KB. Olmesartan restores the protective effect of remote ischemic perconditioning against myocardial ischemia/reperfusion injury in spontaneously hypertensive rats. Clinics (Sao Paulo) 2015; 70. [PMID: 26222820 PMCID: PMC4496757 DOI: 10.6061/clinics/2015(07)07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Remote ischemic perconditioning is the newest technique used to lessen ischemia/reperfusion injury. However, its effect in hypertensive animals has not been investigated. This study aimed to examine the effect of remote ischemic perconditioning in spontaneously hypertensive rats and determine whether chronic treatment with Olmesartan could influence the effect of remote ischemic perconditioning. METHODS Sixty rats were randomly divided into six groups: vehicle-sham, vehicle-ischemia/reperfusion injury, vehicle-remote ischemic perconditioning, olmesartan-sham, olmesartan-ischemia/reperfusion and olmesartan-remote ischemic perconditioning. The left ventricular mass index, creatine kinase concentration, infarct size, arrhythmia scores, HIF-1α mRNA expression, miR-21 expression and miR-210 expression were measured. RESULTS Olmesartan significantly reduced the left ventricular mass index, decreased the creatine kinase concentration, limited the infarct size and reduced the arrhythmia score. The infarct size, creatine kinase concentration and arrhythmia score during reperfusion were similar for the vehicle-ischemia/reperfusion group and vehicle-remote ischemic perconditioning group. However, these values were significantly decreased in the olmesartan-remote ischemic perconditioning group compared to the olmesartan-ischemia/reperfusion injury group. HIF-1α, miR-21 and miR-210 expression were markedly down-regulated in the Olmesartan-sham group compared to the vehicle-sham group and significantly up-regulated in the olmesartan-remote ischemic perconditioning group compared to the olmesartan-ischemia/reperfusion injury group. CONCLUSION The results indicate that (1) the protective effect of remote ischemic perconditioning is lost in vehicle-treated rats and that chronic treatment with Olmesartan restores the protective effect of remote ischemic perconditioning; (2) chronic treatment with Olmesartan down-regulates HIF-1α, miR-21 and miR-210 expression and reduces hypertrophy, thereby limiting ischemia/reperfusion injury; and (3) recovery of the protective effect of remote ischemic perconditioning is related to the up-regulation of HIF-1α, miR-21 and miR-210 expression.
Collapse
Affiliation(s)
- Xin Lu
- Shandong University, Qilu Hospital, Department of Cardiovascular Surgery, Jinan, China
| | - Yan-Wen Bi
- Shandong University, Qilu Hospital, Department of Cardiovascular Surgery, Jinan, China
- Corresponding Author: E-mail:
| | - Ke-Biao Chen
- Taian City Central Hospital, Department of Cardiovascular Surgery, Taian, China
| |
Collapse
|
6
|
The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:925167. [PMID: 26078822 PMCID: PMC4442295 DOI: 10.1155/2015/925167] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production.
Collapse
|
7
|
Lu X, Bi YW, Chen KB, Wang HY. Protective effect of olmesartan against cardiac ischemia/reperfusion injury in spontaneously hypertensive rats. Exp Ther Med 2015; 9:2081-2087. [PMID: 26136939 DOI: 10.3892/etm.2015.2373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/05/2015] [Indexed: 01/31/2023] Open
Abstract
Olmesartan, as a new angiotensin II receptor blocker, has shown beneficial effects on cardiovascular diseases. Nevertheless, the effect of olmesartan on ischemia/reperfusion (I/R) injury in the hypertensive heart has not been investigated. Therefore, the present study aimed to investigate the effect of olmesartan on I/R injury in spontaneously hypertensive rats (SHRs). Experimental groups were designed with a 2×2 factorial design for olmesartan and I/R effects. In the I/R group, the left anterior descending coronary artery (LAD) was ligated for 40 min followed by a 180-min reperfusion. In the sham group, SHRs underwent the same surgical procedure as the I/R group, with the exception that the suture passed under the LAD without being tightened. In the Olm-I/R group, the SHRs received olmesartan (5 mg/kg) for 4 weeks prior to surgery and other procedures were the same as for the I/R group. In the Olm-sham group, the SHRs received olmesartan (5 mg/kg) for 4 weeks prior to surgery and other procedures were the same as for the sham group. Infarct size was measured for the I/R and Olm-I/R groups. Blood pressure (BP), serum creatine kinase (CK), left ventricular mass index (LVMI), high mobility group box 1 (HMGB1) protein expression levels and hypoxia-inducible factor-1α (HIF-1α) mRNA expression levels were measured for all four groups. Olmesartan significantly reduced BP and LVMI in the olmesartan-treated SHRs compared with those in the SHRs that were not treated with olmesartan. HMGB1 and HIF-1α expression levels were significantly decreased in the Olm-sham and Olm-I/R groups compared with those in the sham and I/R groups, respectively. The proportional increase in HIF-1α expression due to I/R was greater in the olmesartan-treated rats than in the untreated rats. Serum CK levels were significantly reduced in the Olm-I/R group compared with those in the I/R group. In conclusion, olmesartan ameliorates left ventricular hypotrophy and protects the heart against I/R injury in addition to lowing BP in SHRs. The protective effect of olmesartan may be partly due to its antioxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Xin Lu
- Department of Cardiovascular Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China ; Department of Cardiovascular Surgery, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yan-Wen Bi
- Department of Cardiovascular Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ke-Biao Chen
- Department of Cardiovascular Surgery, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Hong-Yue Wang
- Department of Cardiovascular Surgery, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
8
|
Optimal intervention time of vagal stimulation attenuating myocardial ischemia/reperfusion injury in rats. Inflamm Res 2014; 63:987-99. [DOI: 10.1007/s00011-014-0775-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 01/21/2023] Open
|
9
|
Karu I, Tähepõld P, Ruusalepp A, Zilmer K, Zilmer M, Starkopf J. Effects of 60 minutes of hyperoxia followed by normoxia before coronary artery bypass grafting on the inflammatory response profile and myocardial injury. J Negat Results Biomed 2012; 11:14. [PMID: 22978419 PMCID: PMC3460785 DOI: 10.1186/1477-5751-11-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/11/2012] [Indexed: 11/27/2022] Open
Abstract
Background Ischemic preconditioning induces tolerance against ischemia-reperfusion injury prior a sustained ischemic insult. In experimental studies, exposure to hyperoxia for a limited time before ischemia induces a low-grade systemic oxidative stress and evokes an (ischemic) preconditioning-like effect of the myocardium. We hypothesised that pre-treatment by hyperoxia favours enchanced myocardial protection described by decreased release of cTn T in the 1st postoperative morning and reduces the release of inflammatory cytokines. Methods Forty patients with stable coronary artery disease underwent coronary artery bypass grafting with cardiopulmonary bypass. They were ventilated with 40 or >96% oxygen for 60 minutes followed by by 33 (18–59) min normoxia before cardioplegia. Results In the 1st postoperative morning concentrations of cTnT did not differ between groups ((0.44 (0.26-0.55) ng/mL in control and 0.45 (0.37-0.71) ng/mL in hyperoxia group). Sixty minutes after declamping the aorta, ratios of IL-10/IL-6 (0.73 in controls and 1.47 in hyperoxia, p = 0.03) and IL-10/TNF-α (2.91 and 8.81, resp., p = 0.015) were significantly drifted towards anti-inflammatory, whereas interleukins 6, 8and TNF-α and interferon-γ showed marked postoperative rise, but no intergroup differences were found. Conclusions Pre-treatment by 60 minutes of hyperoxia did not reduce postoperative leak of cTn T in patients undergoing coronary artery bypass surgery. In the hyperoxia group higher release of anti-inflammatory IL-10 caused drifting of IL-10/IL-6 and IL-10/TNF-α towards anti-inflammatory.
Collapse
Affiliation(s)
- Inga Karu
- North Estonia Medical Centre, Clinic of Anaesthesiology, Tallinn, Estonia.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Oxygen (O(2)) is the most frequently used pharmaceutical in anesthesiology and intensive care medicine: Every patient receives O(2) during surgery or during a stay in the intensive care unit. Hypoxia and hypoxemia of various origins are the most typical indications which are mentioned in the prescribing information of O(2): the goal of the administration of O(2) is either an increase of arterial O(2) partial pressure in order to treat hypoxia, or an increase of arterial O(2) content in order to treat hypoxemia. Most of the indications for O(2) administration were developed in former times and have seldom been questioned from that time on as the short-term side-effects of O(2) are usually considered to be of minor importance. As a consequence only a small number of controlled randomized studies exist, which can demonstrate the efficacy of O(2) in terms of evidence-based medicine. However, there is an emerging body of evidence that specific side-effects of O(2) result in a deterioration of the microcirculation. The administration of O(2) induces arteriolar constriction which will initiate a decline of regional O(2) delivery and subsequently a decline of tissue oxygenation. The aim of the manuscript presented is to discuss the significance of O(2) as a pharmaceutical in the clinical setting.
Collapse
|
11
|
Abstract
The current practice of mechanical ventilation comprises the use of the least inspiratory O2 fraction associated with an arterial O2 tension of 55 to 80 mm Hg or an arterial hemoglobin O2 saturation of 88% to 95%. Early goal-directed therapy for septic shock, however, attempts to balance O2 delivery and demand by optimizing cardiac function and hemoglobin concentration, without making use of hyperoxia. Clearly, it has been well-established for more than a century that long-term exposure to pure O2 results in pulmonary and, under hyperbaric conditions, central nervous O2 toxicity. Nevertheless, several arguments support the use of ventilation with 100% O2 as a supportive measure during the first 12 to 24 hrs of septic shock. In contrast to patients without lung disease undergoing anesthesia, ventilation with 100% O2 does not worsen intrapulmonary shunt under conditions of hyperinflammation, particularly when low tidal volume-high positive end-expiratory pressure ventilation is used. In healthy volunteers and experimental animals, exposure to hyperoxia may cause pulmonary inflammation, enhanced oxidative stress, and tissue apoptosis. This, however, requires long-term exposure or injurious tidal volumes. In contrast, within the timeframe of a perioperative administration, direct O2 toxicity only plays a negligible role. Pure O2 ventilation induces peripheral vasoconstriction and thus may counteract shock-induced hypotension and reduce vasopressor requirements. Furthermore, in experimental animals, a redistribution of cardiac output toward the kidney and the hepato-splanchnic organs was observed. Hyperoxia not only reverses the anesthesia-related impairment of the host defense but also is an antibiotic. In fact, perioperative hyperoxia significantly reduced wound infections, and this effect was directly related to the tissue O2 tension. Therefore, we advocate mechanical ventilation with 100% O2 during the first 12 to 24 hrs of septic shock. However, controlled clinical trials are mandatory to test the safety and efficacy of this approach.
Collapse
|
12
|
Xiong J, Wang Q, Xue FS, Yuan YJ, Li S, Liu JH, Liao X, Zhang YM. Comparison of cardioprotective and anti-inflammatory effects of ischemia pre- and postconditioning in rats with myocardial ischemia-reperfusion injury. Inflamm Res 2010; 60:547-54. [PMID: 21193944 DOI: 10.1007/s00011-010-0303-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/17/2010] [Accepted: 12/15/2010] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To compare cardioprotective and anti-inflammatory effects of ischemia preconditioning (IPC) and ischemia postconditioning (IPOC) in a rat myocardial ischemia-reperfusion injury (IRI) model. METHODS Forty Sprague-Dawley rats were randomly divided equally into four groups. In the groups other than the sham group, the left anterior descending coronary artery was ligated for 30 min followed by a 180 min reperfusion in vivo. The control group was subjected to no additional intervention, the IPC group to three cycles of 5 min ischemia separated by 5 min reperfusion before the index ischemia and the IPOC group to three cycles of 10 s ischemia separated by 10 s reperfusion immediately after the end of the index ischemia. Hemodynamic changes during the ischemia and reperfusion were recorded. At 180 min of reperfusion, serum concentrations of troponin I (TnI), tumor necrosis factor α (TNF-α) and high-mobility group box 1 (HMGB-1) were assayed, and the infarction size was assessed by Evans blue and triphenyltetrazolium chloride staining. RESULTS Compared to the control group, infarct size and serum concentrations of TnI, TNF-α and HMGB1 at 180 min of reperfusion were significantly reduced in the IPC and IPOC groups. However, infarct size and serum concentrations of TNF-α and HMGB1 at 180 min of reperfusion were significantly increased in the IPOC group compared to the IPC group. CONCLUSIONS In the rats with myocardial IRI in vivo, both IPC and IPOC can produce significant cardioprotective and anti-inflammatory effects. However, cardioprotective and anti-inflammatory effects provided by IPOC are weaker than with IPC.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | | | | | | | | | | | | | | |
Collapse
|