1
|
Nguyen QH, Lai CHR, Norris MJ, Ng D, Shah M, Lai CCL, Isenman DE, Moraes TF. A surface lipoprotein on Pasteurella multocida binds complement factor I to promote immune evasion. PLoS Pathog 2025; 21:e1012686. [PMID: 40327719 DOI: 10.1371/journal.ppat.1012686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
Pasteurella multocida is the leading cause of wound infections in humans following animals' bites or scratches. This bacterium is also commonly found in the respiratory tract of many mammals and can cause serious diseases resulting in the rapid death of infected animals, especially cattle. To prevent these infections in cattle, a subunit-based vaccine utilizing the surface lipoprotein PmSLP was developed and showed remarkable protection with a single dose administration. Here, we report that PmSLP binds host complement factor I (FI) and facilitates cleavage of complement components C3b and C4b independently of any cofactors (e.g., FH, C4BP), thereby allowing the pathogen to evade host defence. Cryo-EM structure of PmSLP bound to FI reveals that PmSLP stimulates FI enzymatic activity by stabilizing the catalytic domain. This is the first time that a bacterial protein has been shown to directly activate FI independent of complement cofactors and target all arms of the complement cascade.
Collapse
Affiliation(s)
- Quynh Huong Nguyen
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael J Norris
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - David E Isenman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Nguyen QH, Lai CHR, Norris MJ, Ng D, Shah M, Lai CCL, Isenman DE, Moraes TF. A surface lipoprotein on Pasteurella multocida binds complement factor I to promote immune evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619360. [PMID: 39484374 PMCID: PMC11526892 DOI: 10.1101/2024.10.21.619360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pasteurella multocida is the leading cause of wound infections in humans following animals' bites or scratches. This bacterium is also commonly found in the respiratory tract of many mammals and can cause serious diseases resulting in the brutal rapid death of infected animals, especially cattle. To prevent these infections in cattle, a subunit-based vaccine utilizing the surface lipoprotein PmSLP was developed and showed remarkable protection with a single dose administration. Here, we report that PmSLP binds host complement factor I (FI) and facilitates cleavage of complement components C3b and C4b independently of any cofactors (e.g FH, C4BP), thereby allowing the pathogen to evade host defence. Cryo-EM structure of PmSLP bound to FI reveals that PmSLP stimulates FI enzymatic activity by stabilizing the catalytic domain. This is the first time that a bacterial protein has been shown to directly activate FI independent of complement cofactors and target all arms of the complement cascade.
Collapse
Affiliation(s)
| | | | - Michael J Norris
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - David E Isenman
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Functional and Expressional Analyses Reveal the Distinct Role of Complement Factor I in Regulating Complement System Activation during GCRV Infection in Ctenopharyngodon idella. Int J Mol Sci 2022; 23:ijms231911369. [PMID: 36232671 PMCID: PMC9569754 DOI: 10.3390/ijms231911369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Complement factor I (CFI), a complement inhibitor, is well known for regulating the complement system activation by degrading complement component 3b (C3b) in animal serum, thus becoming involved in innate defense. Nevertheless, the functional mechanisms of CFI in the complement system and in host-pathogen interactions are far from being clarified in teleost fish. In the present study, we cloned and characterized the CFI gene, CiCFI, from grass carp (Ctenopharyngodon idella) and analyzed its function in degrading serum C3b and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiCFI was found to be 2121 bp, encoding 706 amino acids with a molecular mass of 79.06 kDa. The pairwise alignments showed that CiCFI shared the highest identity (66.9%) with CFI from Carassius gibelio and the highest similarity (78.7%) with CFI from Danio rerio. The CiCFI protein was characterized by a conserved functional core Tryp_SPc domain with the catalytic triad and substrate binding sites. Phylogenetic analysis indicated that CiCFI and the homologs CFIs from other teleost fish formed a distinct evolutionary branch. Similar with the CFIs reported in mammals, the recombinant CiCFI protein could significantly reduce the C3b content in the serum, demonstrating the conserved function of CiCFI in the complement system in the grass carp. CiCFI mRNA and protein showed the highest expression level in the liver. After GCRV infection, the mRNA expressions of CiCFI were first down-regulated, then up-regulated, and then down-regulated to the initial level, while the protein expression levels maintained an overall downward trend to the late stage of infection in the liver of grass carps. Unexpectedly, the protein levels of CiCFI were also continuously down-regulated in the serum of grass carps during GCRV infection, while the content of serum C3b proteins first increases and then returns to the initial level, suggesting a distinct role of CiCFI in regulating complement activation and fish-virus interaction. Combining our previous results that complement factor D, a complement enhancer, shows continuously up-regulated expression levels in grass carps during GCRV infection, and this study may provide the further essential data for the full picture of complex complement regulation mechanism mediated by Df and CFI of the grass carp during pathogen infection.
Collapse
|
4
|
Qin C, Gong Q, Wen Z, Yuan D. Molecular characterization and expression of complement factor I in Pelteobagrus vachellii during Aeromonas hydrophila infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:66-71. [PMID: 29329952 DOI: 10.1016/j.dci.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/07/2018] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
Complement factor I (CFI) is a novel regulatory serine protease that plays an important role in resistance to pathogen infection. In this study, the CFI gene of Pelteobagrus vachellii (Pv-CFI) was sequenced and characterized. The full-length cDNA of 2320 bp includes a 155 bp 5'-untranslated region (UTR), a 164 bp 3'-UTR, and a 2001 bp open reading frame (ORF) encoding a 667 amino acids. Multiple sequence alignment revealed five highly conserved domains with a typical modular architecture and identical active sites in vertebrates, indicating a conserved function. Pv-CFI mRNA was constitutively expressed in all examined tissues and most abundant in liver. During infection with Aeromonas hydrophila, Pv-CFI mRNA expression was significantly up-regulated in liver at 3-24 h, spleen at 3-48 h and head kidney at 3-48 h. The results suggest Pv-CFI plays an important role in resistance to pathogenic bacteria in P. vachellii.
Collapse
Affiliation(s)
- Chuanjie Qin
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China.
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, PR China
| | - Zhengyong Wen
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Dengyue Yuan
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| |
Collapse
|
5
|
Xiang J, Li X, Chen Y, Lu Y, Yu M, Chen X, Zhang W, Zeng Y, Sun L, Chen S, Sha Z. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:199-209. [PMID: 26148855 DOI: 10.1016/j.dci.2015.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/30/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Complement factor I (Cfi) is a soluble serine protease which plays a crucial role in the modulation of complement cascades. In the presence of substrate modulating cofactors (such as complement factor H, C4bp, CR1, etc), Cfi cleaves and inactivates C3b and C4b, thereby controlling the complement-mediated processes. In this study, we sequenced and characterized Cfi gene from Cynoglossus Semilaevis (designated as CsCfi) for the first time. The full-length cDNA of CsCfi was 2230 bp in length, including a 98 bp 5'-untranslated region (UTR), a 164 bp 3'-UTR and a 1968 bp open reading frame (ORF). It encoded a polypeptide of 656 amino acids, with a molecular mass of 72.28 kDa and an isoelectric point of 7.71. A signal peptide was defined at N-terminus, resulting in a 626-residue mature protein. Multiple sequence alignment revealed that Cfi proteins were well conserved with the typical modular architecture and identical active sites throughout the vertebrates, which suggested the conserved function of Cfi. Phylogenetic analysis indicated that CsCfi and the homologous Cfi sequences from teleosts clustered into a clade, separating from another clade from the cartilaginous fish and other vertebrates. Tissue expression profile analysis by quantitative real-time PCR (qRT-PCR) showed that CsCfi mRNA constitutively expressed in all tested tissues, with the predominant expression in liver and the lowest in stomach. Temporal expression levels of CsCfi after challenging with Vibrio anguillarum showed different expression patterns in intestine, spleen, skin, blood, head kidney and liver. The recombinant CsCfi (rCsCfi) protein showed broad-spectrum antimicrobial activities against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and Shewanella putrefaciens. The research revealed that CsCfi plays an important role in C. Semilaevis immunity.
Collapse
Affiliation(s)
- Jinsong Xiang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xihong Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, National Lab for Ocean Science and Technology, Qingdao 266235, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yang Lu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Mengjun Yu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xuejie Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenting Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yan Zeng
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Luming Sun
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, National Lab for Ocean Science and Technology, Qingdao 266235, China
| | - Zhenxia Sha
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
6
|
Wang Y, Chen B, Ke Y, Wang C, Ye B. Molecular characterization and expression analysis of the complement factor I (CpFI) in the whitespotted bamboo shark (Chiloscyllium plagiosum). FISH & SHELLFISH IMMUNOLOGY 2014; 40:414-423. [PMID: 25108086 DOI: 10.1016/j.fsi.2014.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Complement factor I (FI) is a plasma serine proteinase that plays an essential role in the modulation of the complement cascade. In the presence of substrate modulating cofactors (Factor H, C4bp, CR1, etc), FI cleaves the activation products of C3 (i.e. C3b) and C4 (i.e. C4b) to limit complement activity. In this study, the full length cDNA of factor I (CpFI) is isolated from the liver of the whitespotted bamboo shark (Chiloscyllium plagiosum). The CpFI cDNA is 2326 bp in length, encoding a protein of 671 amino acids, which shares 72-80% identity with FI molecules of other sharks, higher than the teleosts (37-40%) and mammals (44-47%). The sequence alignment and comparative analysis indicates the FI proteins are well conserved, with the typical modular architecture and identical active sites throughout vertebrate evolution, suggesting the conserved function. However, the additional sequence present between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain in other fishes is also found in CpFI, which consists of two kind of tandem repeats. Phylogenetic analysis suggests that CpFI belongs to the elasmobranch clade, in parallel with the higher vertebrates, to form a sister taxa to teleosts. Expression analysis revealed that CpFI is ubiquitously distributed in a variety of tissues, with the constitutive expression in liver, which might reflect the species-specific distribution patterns of FI. Together with earlier reports, the presence of FI in various sharks might suggest the existence of a well-developed complement regulation mechanism in cartilaginous fish.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Biao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yan Ke
- National Center for Traditional Chinese Medicine, Beijing 100027, PR China
| | - Conghui Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Boping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
7
|
Yadav VN, Pyaram K, Ahmad M, Sahu A. Species selectivity in poxviral complement regulators is dictated by the charge reversal in the central complement control protein modules. THE JOURNAL OF IMMUNOLOGY 2012; 189:1431-9. [PMID: 22732591 DOI: 10.4049/jimmunol.1200946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Variola and vaccinia viruses, the two most important members of the family Poxviridae, are known to encode homologs of the human complement regulators named smallpox inhibitor of complement enzymes (SPICE) and vaccinia virus complement control protein (VCP), respectively, to subvert the host complement system. Intriguingly, consistent with the host tropism of these viruses, SPICE has been shown to be more human complement-specific than VCP, and in this study we show that VCP is more bovine complement-specific than SPICE. Based on mutagenesis and mechanistic studies, we suggest that the major determinant for the switch in species selectivity of SPICE and VCP is the presence of oppositely charged residues in the central complement control modules, which help enhance their interaction with factor I and C3b, the proteolytically cleaved form of C3. Thus, our results provide a molecular basis for the species selectivity in poxviral complement regulators.
Collapse
Affiliation(s)
- Viveka Nand Yadav
- National Centre for Cell Science, Pune University, Ganeshkhind, Pune 411007, India
| | | | | | | |
Collapse
|
8
|
Dec M, Wernicki A, Puchalski A, Urban-Chmiel R, Grąz M. Purification and electrophoretic characterization of bovine conglutinin. Biomed Chromatogr 2011; 26:684-90. [DOI: 10.1002/bmc.1713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/11/2011] [Indexed: 11/05/2022]
Affiliation(s)
- Marta Dec
- University of Life Sciences in Lublin; Akademicka 12, 20-033; Lublin; Poland
| | - Andrzej Wernicki
- University of Life Sciences in Lublin; Akademicka 12, 20-033; Lublin; Poland
| | - Andrzej Puchalski
- University of Life Sciences in Lublin; Akademicka 12, 20-033; Lublin; Poland
| | - Renata Urban-Chmiel
- University of Life Sciences in Lublin; Akademicka 12, 20-033; Lublin; Poland
| | - Marcin Grąz
- Maria Curie-Skłodowska University; Akademicka 19, 20-033; Lublin; Poland
| |
Collapse
|
9
|
Shin DH, Webb BM, Nakao M, Smith SL. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence. Mol Immunol 2009; 46:2299-308. [PMID: 19423168 DOI: 10.1016/j.molimm.2009.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/23/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (<or=) amino acid identities with each other, 35.4-39.6% and 62.8-65.9% with factor I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1-3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent.
Collapse
Affiliation(s)
- Dong-Ho Shin
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
10
|
Antalíková J, Simon M, Jankovicová J, Horovská L. Identification of MCP/CD46 analogue on bovine erythrocytes using the new monoclonal antibody IVA-520. Vet Immunol Immunopathol 2006; 115:155-9. [PMID: 17137635 DOI: 10.1016/j.vetimm.2006.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/04/2006] [Accepted: 10/17/2006] [Indexed: 11/17/2022]
Abstract
MCP/CD46 is a widely distributed C3b/C4b binding regulatory glycoprotein of the complement system that has been identified on all human peripheral blood cells except erythrocytes. In this paper, we describe the identification of bovine CD46 on all blood cells, including erythrocytes, with the newly prepared monoclonal antibody IVA-520. This antibody cross-reacts with human and pig cells. Furthermore, the molecule identified by IVA-520 functionally behaves as the MCP molecule, showing cofactor activity for the factor I-mediated cleavage of bovine C3 complement factor.
Collapse
Affiliation(s)
- Jana Antalíková
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28 Ivanka pri Dunaji, Slovak Republic.
| | | | | | | |
Collapse
|