1
|
Lewis THJ, Zhuo J, McClellan JX, Getsy PM, Ryan RM, Jenkins MJ, Lewis SJ. Infrared light elicits endothelium-dependent vasodilation in isolated occipital arteries of the rat via soluble guanylyl cyclase-dependent mechanisms. Front Physiol 2023; 14:1219998. [PMID: 37664436 PMCID: PMC10471192 DOI: 10.3389/fphys.2023.1219998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
The left and right occipital arteries provide blood supply to afferent cell bodies in the ipsilateral nodose and petrosal ganglia. This supply is free of an effective blood-ganglion barrier, so changes in occipital artery blood flow directly affect the access of circulating factors to the afferent cell bodies. The application of infrared (IR) light to modulate neural and other cell processes has yielded information about basic biological processes within tissues and is gaining traction as a potential therapy for a variety of disease processes. To address whether IR can directly modulate vascular function, we performed wire myography studies to determine the actions of IR on occipital arteries isolated from male Sprague-Dawley rats. Based on our previous research that functionally-important differences exist between occipital artery segments close to their origin at the external carotid artery (ECA) and those closer to the nodose ganglion, the occipital arteries were dissected into two segments, one closer to the ECA and the other closer to the nodose ganglion. Segments were constricted with 5-hydroxytryptamine to a level equal to 50% of the maximal response generated by the application of a high (80 mM) concentration of K+ ions. The direct application of pulsed IR (1,460 nm) for 5 s produced a rapid vasodilation in occipital arteries that was significantly more pronounced in segments closest to the ECA, although the ECA itself was minimally responsive. The vasodilation remained for a substantial time (at least 120 s) after cessation of IR application. The vasodilation during and following cessation of the IR application was markedly diminished in occipital arteries denuded of the endothelium. In addition, the vasodilation elicited by IR in endothelium-intact occipital arteries was substantially reduced in the presence of a selective inhibitor of the nitric oxide-sensitive guanylate cyclase, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). It appears that IR causes endothelium-dependent, nitric-oxide-mediated vasodilation in the occipital arteries of the rat. The ability of IR to generate rapid and sustained vasodilation may provide new therapeutic approaches for restoring or improving blood flow to targeted tissues.
Collapse
Affiliation(s)
- Tristan H. J. Lewis
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob X. McClellan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Rita M. Ryan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Michael. J. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Departments of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Lewis THJ, Getsy PM, Peroni JF, Ryan RM, Jenkins MW, Lewis SJ. Characterization of endothelium-dependent and -independent processes in occipital artery of the rat: Relevance to control of blood flow to nodose sensory cells. J Appl Physiol (1985) 2021; 131:1067-1079. [PMID: 34323595 DOI: 10.1152/japplphysiol.00221.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating factors access cell bodies of vagal afferents in nodose ganglia (NG) via the occipital artery (OA). Constrictor responses of OA segments closer in origin from the external carotid artery (ECA) differ from segments closer to NG. Our objective was to determine the role of endothelium in this differential vasoreactivity in rat OA segments. Vasoreactivity of OA segments (proximal segments closer to ECA, distal segments closer to NG) were examined in wire myographs. We evaluated (a) vasoconstrictor effects of 5-hydroxytryptamine (5-HT) in intact and endothelium-denuded OA segments in absence/presence of soluble guanylate cyclase (SGC) inhibitor ODQ, (b) vasodilator responses elicited by NO-donor MAHMA NONOate in intact or endothelium-denuded OA segments in absence/presence of ODQ, and (c) vasodilator responses elicited by endothelium-dependent vasodilator, acetylcholine (ACh), in intact OA segments in absence/presence of ODQ. Intact distal OA responded more to 5-HT than intact proximal OA. Endothelium denudation increased 5-HT potency in both OA segments, especially proximal OA. ODQ increased maximal responses of 5HT in both segments, particularly proximal OA. ACh similarly relaxed both OA segments, effects abolished by endothelial denudation and attenuated by ODQ. MAHMA NONOate elicited transient vasodilation in both segments. Effects of ODQ against ACh were segment-dependent whereas those against MAHMA NONOate were not. The endothelium regulates OA responsiveness in a segment-dependently fashion. Endothelial cells at the OA-ECA junction more strongly influence vascular tone than those closer to NG. Differential endothelial regulation of OA tone may play a role in controlling blood flow and access of circulating factors to NG.
Collapse
Affiliation(s)
- Tristan H J Lewis
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - John F Peroni
- Department of Large Animal Medicine, University of Georgia, Athens, Georgia, United States
| | - Rita M Ryan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen John Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States.,Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Billaud M, Chiu YH, Lohman AW, Parpaite T, Butcher JT, Mutchler SM, DeLalio LJ, Artamonov MV, Sandilos JK, Best AK, Somlyo AV, Thompson RJ, Le TH, Ravichandran KS, Bayliss DA, Isakson BE. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci Signal 2015; 8:ra17. [PMID: 25690012 DOI: 10.1126/scisignal.2005824] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both purinergic signaling through nucleotides such as ATP (adenosine 5'-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis.
Collapse
Affiliation(s)
- Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Alexander W Lohman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thibaud Parpaite
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stephanie M Mutchler
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mykhaylo V Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joanna K Sandilos
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Thu H Le
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA. Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
4
|
Wooldridge AA, Waguespack RW, Schwartz DD, Venugopal CS, Eades SC, Beadle RE. Vasorelaxation responses to insulin in laminar vessel rings from healthy, lean horses. Vet J 2014; 202:83-8. [PMID: 25155219 DOI: 10.1016/j.tvjl.2014.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 10/25/2022]
Abstract
Hyperinsulinemia causes laminitis experimentally and is a risk factor for naturally occurring laminitis. The aim of this study was to investigate the effects of insulin on laminar vascular relaxation and to induce insulin-associated vascular dysfunction in vitro. Relaxation responses of isolated laminar arterial and venous rings to acetylcholine and insulin were evaluated. To alter vascular function in response to insulin, all vessel rings were incubated with insulin or vehicle, submaximally contracted, administered insulin again and relaxation responses recorded. Laminar arteries were also incubated with the mitogen-activated protein kinase (MAPK) inhibitor, PD-98059. Relaxation in response to acetylcholine was not different between arteries and veins, but veins relaxed less in response to insulin than arteries. In arteries incubated with insulin, the subsequent relaxation response to insulin was blunted. Veins had minimal relaxation to insulin regardless of incubation. Arteries incubated with PD-98059 relaxed more in response to insulin than arteries not exposed to PD-98059, indicating that MAPK plays a role in maintenance of basal tone in laminar arteries. A differing response of laminar veins and arteries to insulin-induced relaxation may be important in understanding the link between hyperinsulinemia and laminitis. In vitro induction of vascular dysfunction in response to insulin in laminar arteries may be useful for testing therapeutic interventions and for understanding the pathophysiology of laminitis.
Collapse
Affiliation(s)
- A A Wooldridge
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, 1500 Wire Road, Auburn, Alabama 36849, USA.
| | - R W Waguespack
- Southeastern Veterinary Surgery Center, 3576 Macon Rd., Columbus, Georgia 31907, USA
| | - D D Schwartz
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, 1500 Wire Road, Auburn, Alabama 36849, USA
| | - C S Venugopal
- Equine Health Studies Program, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana 70803, USA
| | - S C Eades
- Equine Health Studies Program, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana 70803, USA
| | - R E Beadle
- Equine Health Studies Program, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
5
|
Borer KE, Bailey SR, Harris PA, Elliott J. Contractile responses of isolated equine digital arteries under hypoxic or hyperoxic conditions in vitro: role of reactive oxygen species and Rho kinase. J Vet Pharmacol Ther 2012; 36:267-74. [PMID: 22762272 DOI: 10.1111/j.1365-2885.2012.01423.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The underlying pathophysiological triggers for equine acute laminitis are unknown, although digital vasoconstriction, ischaemia, hypoxia and reperfusion injury may be involved. The contractile responses of isolated equine digital arteries (EDAs), harvested from the hindlimbs of normal horses postmortem at an abattoir, were studied acutely (up to 3 h) under hyperoxic (95% oxygen, 5% CO2 ) and hypoxic (95% nitrogen, 5% CO2 ) conditions in organ baths. Phenylephrine (PHE; 10(-6) m), 5-hydroxytryptamine (5-HT; 10(-7) m) and high potassium (K(+) ; 118 mm) caused contraction in EDAs which was significantly (P<0.0001) enhanced under hypoxic conditions. In contrast, contraction stimulated by 9,11-dideoxy-9α,11α-epoxymethanoprostaglandin F2α (U44069; 3 × 10(-8) m) was not significantly enhanced by hypoxia (P=0.75). Hypoxia-enhanced contraction in response to K(+) was greater (P<0.03) in vessels with a functional endothelium than in vessels in which the endothelium was removed by rubbing. Fasudil (10(-6) to 10(-5) m), a Rho kinase inhibitor, and apocynin (10(-3) to 3 × 10(-3) m), an NADPH oxidase inhibitor, significantly (P ≤ 0.05) inhibited hypoxia-enhanced contraction in response to PHE and 5-HT. In conclusion, hypoxia-enhanced contraction occurred in EDAs. This appears to be partially mediated by reactive oxygen species produced by NAPDH oxidase, which activate Rho kinase to increase calcium sensitisation and enhance smooth muscle contraction.
Collapse
Affiliation(s)
- K E Borer
- Royal Veterinary College, Hatfield, Herts, UK University of Melbourne, Melbourne, Vic., Australia.
| | | | | | | |
Collapse
|
6
|
Zerpa H, Berhane Y, Elliott J, Bailey SR. The effect of cooling on the contractility of equine digital small lamellar arteries: modulating role of the endothelium. Exp Physiol 2010; 95:1033-42. [PMID: 20660021 DOI: 10.1113/expphysiol.2010.053686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The equine hoof displays thermoregulatory functions, and the blood vessels lying under the hoof wall are temperature sensitive. The aim of this study was to investigate the effect of cooling on the contractile responses to α-adrenoceptor and 5-HT receptor stimulation in equine small lamellar arteries using wire myography. The role of the endothelium in the response mediated by 5-HT was also evaluated. Moderate cooling caused a reduction of the contraction induced by depolarizing Krebs solution (DKS, containing 118 mm KCl) and the maximal contraction caused by UK-14304 (α(2)-adrenoceptor agonist). The potency of methoxamine (α(1)-adrenoceptor agonist) was reduced by cooling [pD(2) (-log EC(50)) at 22°C, 5.7 (5.5-6.0) versus 30°C, 5.9 (5.7-6.1)]; however, the efficacy was maintained. The contractions evoked by sumatripan and α-methyl 5-HT (5-HT receptor agonists) were not modified by moderate cooling. In contrast, a cooling-enhanced contraction was observed in response to 5-HT [maximum response (E(max)) at 22°C, 213.2 ± 13% DKS versus 30°C, 179.9 ± 11% DKS]. Furthermore, this effect was more evident in endothelium-denuded lamellar arteries (E(max) at 22°C, 270.2 ± 26% DKS versus 30°C, 172.2 ± 20% DKS), suggesting a potential modulating role of the endothelium. The L-NAME/ibuprofen-resistant relaxation in response to carbachol was reduced by cooling in small lamellar arteries precontracted with 5-HT but not phenylephrine. Therefore, a moderate reduction of temperature modulates the reactivity of small lamellar arteries by enhancing the 5-HT-mediated contraction, but inhibits the α-adrenoceptor-mediated response. Furthermore, the endothelium of these blood vessels may play an important role in preventing excessive vasoconstriction in response to 5-HT and maintaining digital blood flow in cool environmental temperatures.
Collapse
Affiliation(s)
- Hector Zerpa
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, London, UK
| | | | | | | |
Collapse
|
7
|
Castro JR, Adair HS, Radecki SV, Kiefer VR, Elliot SB, Longhofer SL. Effects of domperidone on digital laminar microvascular blood flow in clinically normal adult horses. Am J Vet Res 2010; 71:281-7. [DOI: 10.2460/ajvr.71.3.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|