1
|
Ding W, Gong W, Bou T, Shi L, Lin Y, Shi X, Li Z, Wu H, Dugarjaviin M, Bai D. Whole-Genome Resequencing Analysis of Copy Number Variations Associated with Athletic Performance in Grassland-Thoroughbred. Animals (Basel) 2025; 15:1458. [PMID: 40427335 PMCID: PMC12108297 DOI: 10.3390/ani15101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Copy number variation (CNV) is an important source of genetic variation. However, studies utilizing whole-genome sequencing to investigate CNVs in horse populations and their effects on traits remain relatively limited. This study aims to address the lack of research on the impact of copy number variation (CNV) on racing performance in horse populations, providing new insights for locally bred racing breeds. We analyzed 60 offspring derived from the crossbreeding of Thoroughbred horses and Xilingol horses. These horses were temporarily named "Grassland-Thoroughbred" and were divided into two groups: 30 racing horses and 30 non-racing horses. A total of 89,527 CNVs were identified. After merging overlapping CNVs, 982 copy number variation regions (CNVRs) were recognized, among which the racing horse group (RH) had 29 unique CNVRs, while the non-racing horse group (NR) had 4 unique CNVRs. In addition, a total of 195 genes overlapping with CNVRs were identified. Transcriptomic analysis revealed 120 differentially expressed genes, with MTPN expressed in both CNVR-overlapping genes and mRNA. Both CNVR-overlapping genes and differentially expressed genes were enriched in the MAPK signaling pathway; CNV may affect gene expression through gene dosage effects or regulatory mechanisms. Using Vst statistical analysis, we further screened candidate CNVRs in autosomes that exceeded the 95% differentiation threshold between the RH and NR populations. Several key genes associated with energy metabolism and muscle function were identified, including AGT, IGFN1, IMMPL2, SLC41A3, AOX4, and ACAD11. These findings provide new insights into the genetic structural variation in racing performance and adaptability, fill the gap in CNV studies in the genomics of Grassland-Thoroughbred horses, and offer valuable genomic data for optimizing breeding strategies in native racing horse populations.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Shi
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Lin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyuan Shi
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zheng Li
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huize Wu
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (X.S.); (Z.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Ding W, Gong W, Bou T, Shi L, Lin Y, Wu H, Dugarjaviin M, Bai D. Pilot Study on the Profiling and Functional Analysis of mRNA, miRNA, and lncRNA in the Skeletal Muscle of Mongolian Horses, Xilingol Horses, and Grassland-Thoroughbreds. Animals (Basel) 2025; 15:1123. [PMID: 40281957 PMCID: PMC12024394 DOI: 10.3390/ani15081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Muscle fibers, as the fundamental units of muscle tissue, play a crucial role in determining skeletal muscle function through their growth, development, and composition. To investigate changes in muscle fiber types and their regulatory mechanisms in Mongolian horses (MG), Xilingol horses (XL), and Grassland-Thoroughbreds (CY), we conducted histological and bioinformatic analyses on the gluteus medius muscle of these three horse breeds. Immunofluorescence analysis revealed that Grassland-Thoroughbreds had the highest proportion of fast-twitch muscle fibers at 78.63%, while Mongolian horses had the lowest proportion at 57.54%. Whole-transcriptome analysis identified 105 differentially expressed genes (DEGs) in the CY vs. MG comparison and 104 DEGs in the CY vs. XL comparison. Time-series expression profiling grouped the DEGs into eight gene sets, with three sets showing significantly up-regulated or down-regulated expression patterns (p < 0.05). Additionally, 280 differentially expressed long non-coding RNAs (DELs) were identified in CY vs. MG, and 213 DELs were identified in CY vs. XL. A total of 32 differentially expressed microRNAs (DEMIRs) were identified in CY vs. MG, while 44 DEMIRs were found in CY vs. XL. Functional enrichment analysis indicated that the DEGs were significantly enriched in essential biological processes, such as actin filament organization, muscle contraction, and protein phosphorylation. KEGG pathway analysis showed their involvement in key signaling pathways, including the mTOR signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. Furthermore, functional variation-based analyses revealed associations between non-coding RNAs and mRNAs, with some non-coding RNAs targeting genes potentially related to muscle function regulation. These findings provide valuable insights into the molecular basis for the environmental adaptability, athletic performance, and muscle characteristics in horses, offering new perspectives for the breeding of Grassland-Thoroughbreds.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Shi
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Lin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huize Wu
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Aleman M. Disorders of Muscle Mass and Tone. Vet Clin North Am Equine Pract 2025; 41:47-60. [PMID: 39880732 DOI: 10.1016/j.cveq.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Muscle disease has various clinical manifestations that range from exertional and non-exertional rhabdomyolysis, fasciculations, weakness, rigidity, stiffness, gait abnormalities, poor performance, and alterations in muscle mass and tone. Neurogenic disorders and non-neurogenic disorders such as primary muscle disease can cause muscle atrophy and changes in muscle tone. Myotonic disorders can have a genetic (eg, inherited channelopathies) or acquired (eg, electrolyte derangements) origin. Normal muscle enzyme activities do not rule out a myopathic disorder as the underlying cause of muscle atrophy and changes in muscle tone. Genetic testing to facilitate responsible breeding practices is recommended.
Collapse
Affiliation(s)
- Monica Aleman
- SVM: Department of Medicine and Epidemiology, University of California, Davis, Tupper Hall 2108, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Bou T, Ding W, Ren X, Liu H, Gong W, Jia Z, Zhang X, Dugarjaviin M, Bai D. Muscle fibre transition and transcriptional changes of horse skeletal muscles during traditional Mongolian endurance training. Equine Vet J 2024; 56:178-192. [PMID: 37345447 DOI: 10.1111/evj.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/23/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Traditional Mongolian endurance training is an effective way to improve the athletic ability of the horse for endurance events and is widely used. This incorporates aerobic exercise and intermittent fasting and these altered physiologic conditions are associated with switches between muscle fibre types. OBJECTIVES To better understand the adaption of horse skeletal muscle to traditional Mongolian endurance training from muscle fibre characteristics and transcriptional levels and to explore possible molecular mechanisms associated with the endurance performance of horses. STUDY DESIGN Before-after study. METHODS Muscle fibre type switches and muscle transcriptome changes in six Mongolian horses were assessed during 4 weeks of training. Transcriptomic and histochemical analyses were performed. The activities of oxidative and glycolytic metabolic enzymes were analysed and we generated deep RNA-sequencing data relating to skeletal muscles. RESULTS A fast-to-slow muscle fibre transition occurred in horse skeletal muscles, with a concomitant increase of oxidative enzyme activity and decreased glycolytic enzyme activity. Numerous differentially expressed genes were involved in the control of muscle protein balance and degradation. Differential alternative splicing events were also found during training which included exon-skipping events in Ttn that were associated with muscle atrophy. Differentially expressed noncoding RNAs showed connections with muscle protein balance-related pathways and fibre type specification via the post-transcriptional regulation of miRNA. MAIN LIMITATIONS The study focuses on horse athletic ability only from the aspect of muscular adaptation. CONCLUSION Traditional Mongolian endurance training-induced muscle fibre transition and metabolic and transcriptional changes. Muscle-specific non-coding RNAs could contribute to these transcriptomic changes during training.
Collapse
Affiliation(s)
- Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Ren
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiying Liu
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zijie Jia
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xinzhuang Zhang
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Bou T, Ding W, Liu H, Gong W, Jia Z, Dugarjaviin M, Bai D. A genome-wide landscape of mRNAs, miRNAs, lncRNAs, and circRNAs of skeletal muscles during dietary restriction in Mongolian horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101084. [PMID: 37150091 DOI: 10.1016/j.cbd.2023.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
The proportion of different muscle fibers is essential for the horse breed's aptitude for athletic activities. Adaptation of locomotor muscle is correlated with altered physiologic conditions. To investigate the adaptive changes of muscle fiber phenotype and transcriptome in horse skeletal muscle during dietary restriction (DR). The muscle fiber type distribution and deep RNA-seq analysis of detecting differentially expressed mRNAs (DEGs), miRNA (DEMIRs), lncRNAs (DELs), circRNAs (DECs), and their function analysis were investigated in gluteus medius muscle of Mongolian horses during DR. A total of 1433 DEGs, 5 DEMIRs, 329 DELs, and 53 DECs were identified. Differing from non-uniform muscle fiber type changing, functional enrichment analysis showed that most downregulated DEGs were associated in muscle contraction, fuel energy metabolism, and protein balance. Linkages between non-coding RNA and mRNA landscape were detected from their functional changes. Our study provides new insights into the expressional changes of mRNA and non-coding RNA in horse skeletal muscles during DR, which might improve our understanding of the molecular mechanisms regulating muscle adaption during DR for racing horses.
Collapse
Affiliation(s)
- Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China. https://twitter.com/@BTvgqin
| | - Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiying Liu
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zijie Jia
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
6
|
Manfredi JM, Jacob S, Norton E. A one-health lens offers new perspectives on the importance of endocrine disorders in the equine athlete. J Am Vet Med Assoc 2023; 261:153-164. [PMID: 36595370 DOI: 10.2460/javma.22.11.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endocrine disorders are associated with joint pain and tendon injury in humans, but the effects in the horse are only starting to be understood. Similar patterns of clinical signs and injury appear to affect horses and humans for both orthopedic and endocrine disorders, supporting the use of a one-health approach to tackle these issues. In this Currents in One Health, we will discuss common equine endocrinopathies, current testing recommendations, dietary management, genetic predispositions, and endocrine disorders' effects on performance. Our aim is to use a one-health lens to describe current comparative research so that veterinarians can employ cutting-edge preventative, diagnostic, and therapeutic recommendations. Identified key gaps in knowledge include whether equine metabolic osteoarthritis exists, if steroid joint injections are safe in horses with endocrine disorders, and if the return to performance percentage improves with concurrent treatment of endocrine and musculoskeletal disorders. Key takeaways include that the relationship between endocrine disorders and musculoskeletal disease in the horse goes beyond laminitis to include lameness, muscle atrophy, suspensory ligament degeneration, osteochondritis dissecans, and potentially metabolic osteoarthritis. Approaches learned from human and equine comparative studies can offer insight into injury recognition and management, thus mitigating the impact of endocrine disorders on performance in both species. Readers interested in an in-depth description of current and future research involving pathophysiology, novel interventions, and multiomic approaches to identify individuals with athletic limitations induced by endocrine disorders are invited to read the companion Currents in One Health by Manfredi et al, AJVR, February 2023.
Collapse
Affiliation(s)
- Jane M Manfredi
- 1Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Sarah Jacob
- 1Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Elaine Norton
- 2Department of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
| |
Collapse
|
7
|
Pituitary Pars Intermedia Dysfunction (PPID) in Horses. Vet Sci 2022; 9:vetsci9100556. [PMID: 36288169 PMCID: PMC9611634 DOI: 10.3390/vetsci9100556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Substantial morbidity results from pituitary pars intermedia dysfunction (PPID) which is often underestimated by owners and veterinarians. Clinical signs, pathophysiology, diagnostic tests, and treatment protocols of this condition are reviewed. The importance of improved recognition of early clinical signs and diagnosis are highlighted, as initiation of treatment will result in improved quality of life. Future research should be targeted at improving the accuracy of the diagnosis of PPID, as basal adrenocorticotropic hormone (ACTH) concentration can lack sensitivity and thyrotropin releasing hormone (TRH) used to assess ACTH response to TRH stimulation is not commercially available as a sterile registered product in many countries. The relationship between PPID and insulin dysregulation and its association with laminitis, as well as additional management practices and long-term responses to treatment with pergolide also require further investigation.
Collapse
|
8
|
Galinelli NC, Bailey SR, Bamford NJ, Harris PA. Nutritional considerations for the management of equine pituitary
pars intermedia
dysfunction. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- N. C. Galinelli
- Melbourne Veterinary School The University of Melbourne Parkville Victoria Australia
| | - S. R. Bailey
- Melbourne Veterinary School The University of Melbourne Parkville Victoria Australia
| | - N. J. Bamford
- Melbourne Veterinary School The University of Melbourne Parkville Victoria Australia
| | - P. A. Harris
- Equine Studies Group Waltham Petcare Science Institute Melton Mowbray UK
| |
Collapse
|
9
|
Banse HE, Whitehead AE, McFarlane D, Chelikani PK. Markers of muscle atrophy and impact of treatment with pergolide in horses with pituitary pars intermedia dysfunction and muscle atrophy. Domest Anim Endocrinol 2021; 76:106620. [PMID: 33740552 DOI: 10.1016/j.domaniend.2021.106620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Pituitary pars intermedia dysfunction (PPID) is a common endocrine disorder of aged horses, with muscle atrophy as one of the clinical signs. We sought to compare muscle mass and regulation of skeletal muscle proteolysis between horses with PPID and muscle atrophy to older horses without PPID, and to assess the impact of treatment with pergolide (dopaminergic agonist) on PPID horses. We hypothesized that PPID-associated muscle atrophy is a result of increased proteolysis, and that markers of muscle atrophy and proteolysis would improve over time with pergolide treatment. Markers of muscle atrophy, adiposity, insulin regulation, skeletal muscle composition, and proteolysis (muscle atrophy F- box/atrogin 1 [MAFbx1], muscle RING finger 1 [MuRF1], Bcl2/adenovirus EIV 19kD interacting protein 3 [Bnip3], and microtubule-associated light chain 3 [LC3]) were compared between PPID and control horses. PPID horses were treated for 12 weeks with either pergolide or placebo. Dose of pergolide was adjusted based upon monthly measurement of adrenocorticotropin, and markers of muscle atrophy, adiposity, insulin regulation, skeletal muscle composition, and proteolysis were compared after 12 weeks of treatment. Horses with PPID exhibited increased transcript abundance of MuRF1 (P= 0.04) compared to control. However, no difference was observed in transcript abundance of markers of proteolysis with treatment (P ≥ 0.25). Pergolide treated horses lost weight (P = 0.02) and improved fasting insulin (P = 0.02), while placebo treated horses gained weight and rump fat thickness (P = 0.02). Findings from this study suggest that treatment with pergolide may promote weight loss and improve insulin regulation in horses with PPID, but does not impact muscle mass or markers of muscle proteolysis.
Collapse
Affiliation(s)
- H E Banse
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - A E Whitehead
- Department of Veterinary and Clinical Diagnostic Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - D McFarlane
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - P K Chelikani
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
10
|
Norton E, McCue ME. Genetics of Equine Endocrine and Metabolic Disease. Vet Clin North Am Equine Pract 2020; 36:341-352. [PMID: 32534851 DOI: 10.1016/j.cveq.2020.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A role for a genetic contribution to equine metabolic syndrome (EMS) and pars pituitary intermedia dysfunction (PPID) has been hypothesized. Heritability estimates of EMS biochemical measurements were consistent with moderately to highly heritable traits. Further, genome-wide association analyses have identified hundreds of regions of the genome contributing to EMS and candidate variants have been identified. The genetics of PPID has not yet been proven. Continued research for the specific genetic risk factors for both EMS and PPID is crucial for gaining a better understanding of the pathophysiology of both conditions and allowing development of genetic tests.
Collapse
Affiliation(s)
- Elaine Norton
- Veterinary Population Medicine Department, University of Minnesota, 225 Veterinary Medical Center, 1365 Gortner Avenue, St Paul, MN 55108, USA.
| | - Molly E McCue
- Veterinary Population Medicine Department, University of Minnesota, 225 Veterinary Medical Center, 1365 Gortner Avenue, St Paul, MN 55108, USA
| |
Collapse
|
11
|
Bao T, Han H, Li B, Zhao Y, Bou G, Zhang X, Du M, Zhao R, Mongke T, Laxima, Ding W, Jia Z, Dugarjaviin M, Bai D. The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100649. [PMID: 31869634 DOI: 10.1016/j.cbd.2019.100649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/19/2023]
Abstract
Skeletal muscle is the largest organ system in the mammalian body and plays a key role in locomotion of horses. Fast and slow muscle fibers have different abilities and functions to adapt to exercises. To investigate the RNA and miRNA expression profiles in the muscles with different muscle fiber compositions on Mongolian horses. We examined the muscle fiber type population and produced deep RNA sequencing for different parts of skeletal muscles. And chose two of them with the highest difference in fast and slow muscle fiber population (splenius and gluteus medius) for comparing the gene expression profile of slow and fast muscle fiber types. We identified a total of 275 differentially expressed genes (DEGs), and 11 differentially expressed miRNAs (DEmiRs). In addition, target gene prediction and alternative splicing analysis were also performed. Significant correlations were found between the differentially expressed gene, miRNAs, and alternative splicing events. The result indicated that differentially expressed muscle-specific genes and target genes of miRNAs might co-regulating the performance of slow and fast muscle fiber types in Mongolian horses.
Collapse
Affiliation(s)
- Tugeqin Bao
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haige Han
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bei Li
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinzhuang Zhang
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruoyang Zhao
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Togtokh Mongke
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Laxima
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenqi Ding
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zijie Jia
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
12
|
Ehrle A, Lischer CJ, Lasarzik J, Einspanier R, Bondzio A. Synovial Fluid and Serum Concentrations of Interleukin-1 Receptor Antagonist and Interleukin-1ß in Naturally Occurring Equine Osteoarthritis and Septic Arthritis. J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Mastro LM, Adams AA, Urschel KL. Pituitary pars intermedia dysfunction does not necessarily impair insulin sensitivity in old horses. Domest Anim Endocrinol 2015; 50:14-25. [PMID: 25240230 DOI: 10.1016/j.domaniend.2014.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 01/03/2023]
Abstract
Equine pituitary pars intermedia dysfunction (PPID) has been associated with reduced insulin sensitivity in comparison with younger adult horses; however, the difference in insulin sensitivity between horses with PPID and aged-matched controls has not been well characterized. The objective of the study was to determine if aged horses with PPID had reduced insulin sensitivity and alterations in the insulin-mediated signaling pathways in the skeletal muscle when compared with healthy aged horses. Isoglycemic hyperinsulinemic clamp procedures were conducted in 12 horses that were classified as either PPID (n = 6; age: 25.0 ± 2.5 yr; mean ± standard deviation) or non-PPID, aged-matched controls (control) (n = 6; age: 25.7 ± 2.0 yr). Blood samples were taken before and during the clamp procedures to measure plasma glucose, insulin, and amino acid concentrations, and 2 muscle biopsies were collected from the gluteus medius muscle, one in the basal state and the second at the end of the clamp procedure (insulin-stimulated state). Plasma insulin concentrations increased ∼9-fold during the clamp compared with basal conditions (P < 0.001) in both groups. During the last 30 min of the clamp, the rate of glucose infusion required to maintain isoglycemia in horses with PPID was similar to that in the control horses (P = 0.67). The plasma concentrations of most indispensible amino acids were lower in the insulin-stimulated state than the basal state (P < 0.05). PPID status did not have an effect on the activation of factors associated with protein synthesis and breakdown; however, factors associated with protein synthesis had increased phosphorylation in the insulin-stimulated state, compared with basal. The results from this study provide evidence that PPID is not always associated with impairments in insulin sensitivity.
Collapse
Affiliation(s)
- L M Mastro
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - A A Adams
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - K L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
14
|
Mastro LM, Adams AA, Urschel KL. Whole-body phenylalanine kinetics and skeletal muscle protein signaling in horses with pituitary pars intermedia dysfunction. Am J Vet Res 2014; 75:658-67. [PMID: 24959733 DOI: 10.2460/ajvr.75.7.658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare whole-body phenylalanine kinetics and the abundance of factors in signaling pathways associated with skeletal muscle protein synthesis and protein breakdown between horses with pituitary pars intermedia dysfunction (PPID) and age-matched control horses without PPID. ANIMALS 12 aged horses (6 horses with PPID and 6 control horses; mean age, 25.0 and 25.7 years, respectively). PROCEDURES Plasma glucose, insulin, and amino acids concentrations were determined before and 90 minutes after feeding. Gluteal muscle biopsy samples were obtained from horses 90 minutes after feeding, and the abundance and activation of factors involved in signaling pathways of muscle protein synthesis and breakdown were determined. The next day, horses received a priming dose and 2 hours of a constant rate infusion of (13)C sodium bicarbonate followed by a priming dose and 4 hours of a constant rate infusion of 1-(13)C phenylalanine IV; whole-body protein synthesis was determined. RESULTS Plasma glucose and insulin concentrations were higher after feeding than they were before feeding for both groups of horses; however, no significant postprandial increase in plasma amino acids concentrations was detected for either group. Phenylalanine flux, oxidation, release from protein breakdown, and nonoxidative disposal were not significantly different between groups. No significant effect of PPID status was detected on the abundance or activation of positive or negative regulators of protein synthesis or positive regulators of protein breakdown. CONCLUSIONS AND CLINICAL RELEVANCE Results of this study suggested that whole-body phenylalanine kinetics and the postprandial activation of signaling pathways that regulate protein synthesis and breakdown in muscles were not affected by PPID status alone in aged horses.
Collapse
Affiliation(s)
- Laurel M Mastro
- Departments of Animal and Food Sciences, College of Agriculture, Food and the Environment, University of Kentucky, Lexington, KY 40546
| | | | | |
Collapse
|
15
|
Wagner AL, Urschel KL, Betancourt A, Adams AA, Horohov DW. Effects of advanced age on whole-body protein synthesis and skeletal muscle mechanistic target of rapamycin signaling in horses. Am J Vet Res 2013; 74:1433-42. [DOI: 10.2460/ajvr.74.11.1433] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Nieto JE, Aleman M, Anderson JD, Fiack C, Snyder JR. Effects of phenylbutazone on gene expression of cyclooxygenase-1 and -2 in the oral, glandular gastric, and bladder mucosae of healthy horses. Am J Vet Res 2012; 73:98-104. [PMID: 22204294 DOI: 10.2460/ajvr.73.1.98] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess gene expressions of cyclooxygenase-1 and -2 in oral, glandular gastric, and urinary bladder mucosae and determine the effect of oral administration of phenylbutazone on those gene expressions in horses. ANIMALS 12 healthy horses. PROCEDURES Horses were allocated to receive phenylbutazone or placebo (6 horses/group); 1 placebo-treated horse with a cystic calculus was subsequently removed from the study, and those data were not analyzed. In each horse, the stomach and urinary bladder were evaluated for ulceration via endoscopy before and after experimental treatment. Oral, glandular gastric, and urinary bladder mucosa biopsy specimens were collected by use of a skin punch biopsy instrument (oral) or transendoscopically (stomach and bladder) before and after administration of phenylbutazone (4.4 mg/kg, p.o., q 12 h) in corn syrup or placebo (corn syrup alone) for 7 days. Cyclooxygenase-1 and -2 gene expressions were determined (via quantitative PCR techniques) in specimens collected before and after the 7-day treatment period and compared within and between groups. Prior to commencement of treatment, biopsy specimens from 7 horses were used to compare gene expressions among tissues. RESULTS The cyclooxygenase-1 gene was expressed in all tissues collected. The cyclooxygenase-2 gene was expressed in the glandular gastric and bladder mucosae but not in the oral mucosa. Cyclooxygenase gene expressions were unaffected by phenylbutazone administration. CONCLUSIONS AND CLINICAL RELEVANCE Cyclooxygenase-2 was constitutively expressed in glandular gastric and bladder mucosae but not in the oral mucosa of healthy horses. Oral administration of phenylbutazone at the maximum recommended dosage daily for 7 days did not affect cyclooxygenase-1 or -2 gene expression.
Collapse
Affiliation(s)
- Jorge E Nieto
- Comparative Gastrointestinal Laboratory, Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Equine pituitary pars intermedia dysfunction (PPID), also known as equine Cushing's syndrome, is a widely recognized disease of aged horses. Over the past two decades, the aged horse population has expanded significantly and in addition, client awareness of PPID has increased. As a result, there has been an increase in both diagnostic testing and treatment of the disease. This review focuses on the pathophysiology and clinical syndrome, as well as advances in diagnostic testing and treatment of PPID, with an emphasis on those findings that are new since the excellent comprehensive review by Schott in 2002.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, 264 McElroy Hall, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|