1
|
She H, Qu Y. Cardiovascular Plasticity and Adaptation of High-Altitude Birds and Mammals. Integr Zool 2025. [PMID: 40400082 DOI: 10.1111/1749-4877.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/28/2025] [Accepted: 04/05/2025] [Indexed: 05/23/2025]
Abstract
Exposure to a hypoxic environment at high altitudes imposes severe pressure on animals living there, which utilize substantial cardiovascular and respiratory responses to meet the physiological challenge of oxygen requirement. These responses may result from phenotypic plasticity through short-term exposure (i.e., within a generation) to a new environment or shaped by adaptation (i.e., many generations) through long-term evolution. For example, plasticity triggers a sympathetic-mediated adrenergic response, resulting in an elevation of heart rate and hypoxia-induced pulmonary vasoconstriction that eventually contributes to pulmonary hypertension in some animals. Adaptation to high altitudes can drive an increase in muscular capillarization and adaptive cardiac growth, which promote oxygen diffusion and transportation. Exposure to a high-altitude hypoxic environment stimulates excessive erythropoiesis, which has maladaptive effects and contributes to chronic mountain sickness. Maladaptation caused by plasticity at early stages can be reversed during adaptation. Despite extensive research on high-altitude adaptation, the phenotypic changes and genetic variations in cardiovascular systems responding to high-altitude hypoxia remain insufficiently integrated across taxa. While genomic and transcriptomic studies have advanced our understanding, a cross-taxa comparison of cardiovascular adaptations is still incomplete. We here review recent literature on phenotypic plasticity, adaptations, and genetic and transcriptional basis of cardiovascular systems of mammals and birds living in high altitudes with respect to their duration of exposure at high altitudes. By integrating and comparing data across mammalian and avian species, we aim to provide a framework for understanding the plasticity and adaptation of the cardiovascular system in high-altitude environments.
Collapse
Affiliation(s)
- Huishang She
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Li P, Zhang H, Yang D, Gong C, Wu D, Sun Y, Liu Y, Tang J, Hu H, Zhaxi Q, Xu W, Su L, Li Y, Wu X. Vigilance behaviour during the calving season in female Tibetan antelopes ( Pantholopshodgsonii). Biodivers Data J 2023; 11:e107957. [PMID: 37711367 PMCID: PMC10498271 DOI: 10.3897/bdj.11.e107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Tibetan antelopes (Pantholopshodgsonii) migrate great distances to specific delivery and calving areas. In the current study, we investigated calving site selection and vigilance behaviour during delivery and nursing in migratory female Tibetan antelopes at Zonag Lake. According to observations and analysis, the females were distributed south of Zonag Lake, where vegetation was abundant. We determined their dates of migration (crossing the Qinghai-Tibet Highway observation site), showing a shift of one month during the period from June in 2008 to May 2021. Results also showed that 81.4% of females expressed high vigilance behaviour during calving and nursing compared to those without calves (7.1%). From delivery until calf standing, females were highly vigilant and spent considerable time scanning, with 96% of females showing vigilance behaviour. Females with calves (average 9.94 ± 0.62 s) spent more time on vigilance behaviour than females without calves (average 6.25 ± 1.38 s). Females with newborns spent the greatest amount of time being vigilant (average 51.63 ± 4.24 s). These results not only identify basic Tibetan antelope calving behaviour, but also provide scientific analysis and evidence for further ethological research on female Tibetan antelopes.
Collapse
Affiliation(s)
- Peiwei Li
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Hongfeng Zhang
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Dongdong Yang
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Congran Gong
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Dong Wu
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Yuting Sun
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Yan Liu
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Junqing Tang
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, ChinaSchool of Urban Planning and Design, Shenzhen Graduate School, Peking UniversityShenzhenChina
| | - Han Hu
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Qiupei Zhaxi
- Hoh Xil Nature Reserve service, Golmud, ChinaHoh Xil Nature Reserve serviceGolmudChina
| | - Wei Xu
- Three-River-Source National Park Service, Xining, ChinaThree-River-Source National Park ServiceXiningChina
| | - Lina Su
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Yinhu Li
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| | - Xiaomin Wu
- Shaanxi Institute of Zoology, xi'an, ChinaShaanxi Institute of Zoologyxi'anChina
| |
Collapse
|
3
|
Wang F, Liu J, Zeng Q, Zhuoga D. Comparative analysis of long noncoding RNA and mRNA expression provides insights into adaptation to hypoxia in Tibetan sheep. Sci Rep 2022; 12:6597. [PMID: 35449433 PMCID: PMC9023463 DOI: 10.1038/s41598-022-08625-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/03/2022] [Indexed: 01/21/2023] Open
Abstract
Tibetan sheep have lived on the Qinghai-Tibetan Plateau for thousands of years and have good adaptability to the hypoxic environment and strong disease resistance. However, the molecular mechanism by which Tibetan sheep adapt to this extreme environment, especially the role of genetic regulation, is still unknown. Emerging evidence suggests that long noncoding RNAs (lncRNAs) participate in the regulation of a diverse range of biological processes. To explore the potential lncRNAs involved in the adaptation to high-altitude hypoxia of Tibetan sheep, we analysed the expression profile of lncRNAs and mRNAs in the liver and lung tissues of sheep using comparative transcriptome analysis between four Tibetan sheep populations (high altitude) and one Hu sheep population (low altitude). The results showed a total of 7848 differentially expressed (DE) lncRNA transcripts, and 22,971 DE mRNA transcripts were detected by pairwise comparison. The expression patterns of selected mRNAs and lncRNAs were validated by qRT-PCR, and the results correlated well with the transcriptome data. Moreover, the functional annotation analysis based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases showed that DE mRNAs and the target genes of the lncRNAs were significantly enriched in organ morphogenesis, response to stimulus, haem binding, the immune system, arginine and proline metabolism, and fatty acid biosynthesis. The prediction of mRNA–mRNA and lncRNA–mRNA interaction networks further revealed transcripts potentially involved in adaptation to high-altitude hypoxia, and the hub genes DDX24, PDCD11, EIF4A3, NDUFA11, SART1, PRPF8 and TCONS_00306477, TCONS_00306029, TCONS_00139593, TCONS_00293272, and TCONS_00313398 were selected. Additionally, a set of target genes, PIK3R1, IGF1R, FZD6, IFNB2, ATF3, MB, CYP2B4, PSMD13, and TGFB1, were also identified as candidate genes associated with high-altitude hypoxia adaptation. In conclusion, a collection of novel expressed lncRNAs, a set of target genes and biological pathways known to be relevant for altitude adaptation were identified by comparative transcriptome analysis between Tibetan sheep and Hu sheep. Our results are the first to identify the characterization and expression profile of lncRNAs between Tibetan sheep and Hu sheep and provide insights into the genetic regulation mechanisms by which Tibetan sheep adapt to high-altitude hypoxic environments.
Collapse
Affiliation(s)
- Fan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.,China Agricultural Veterinary Biological Science and Technology Co., Ltd., Lanzhou, 730046, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Deqing Zhuoga
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Science, Lhasa, 850000, China.
| |
Collapse
|
4
|
A single mutation underlying phenotypic convergence for hypoxia adaptation on the Qinghai-Tibetan Plateau. Cell Res 2021; 31:1032-1035. [PMID: 34099886 PMCID: PMC8410794 DOI: 10.1038/s41422-021-00517-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
|
5
|
Wang Y, Zhou R, Yu Q, Feng T, Li H. Gut microbiome adaptation to extreme cold winter in wild plateau pika (Ochotona curzoniae) on the Qinghai-Tibet Plateau. FEMS Microbiol Lett 2021; 367:5896949. [PMID: 32840567 DOI: 10.1093/femsle/fnaa134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The Qinghai-Tibet Plateau is a harsh environment characterized by low temperature, high altitude and hypoxia, although some native mammals may adapt well to the extreme climate. However, how animal gut microbial community structure and function adapt to extreme cold climates is not well understood. Plateau pika (Ochotona curzoniae) is an ideal animal model with which to study the effects of climate change on host adaptation by studing intestinal microorganisms. Here, we used 16S rRNA sequencing technology combined with physiological methods to investigate plateau pika gut microbiota in summer and winter. Due to limited diet resources, the pikas in winter have a lower ability of degradation and fermentation for plant-based food (reduced cellulase activity and total short-chain fatty acids) by decreasing gut microbial diversity and some functional microbes, such as fiber-degrading bacteria Oscillospira and Treponema. Metagenomic prediction showed that most of those gene functions associated with metabolism (e.g. energy metabolism and lipid metabolism) were less abundant in winter, implying that the plateau pika slows diet fermentation and weakens energy requirements in the cold season. Our results have significance for explaining the mechanism of wild plateau mammals adapting to a high-altitude cold environment from the perspective of gut microbiome.
Collapse
Affiliation(s)
- Yijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rui Zhou
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
6
|
Li LL, Ma SK, Peng W, Fang YG, Duo HR, Fu HY, Jia GX. Genetic diversity and population structure of Tibetan sheep breeds determined by whole genome resequencing. Trop Anim Health Prod 2021; 53:174. [PMID: 33611716 DOI: 10.1007/s11250-021-02605-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/08/2021] [Indexed: 12/01/2022]
Abstract
Tibetan sheep is one of primitive Chinese sheep breeds, which achieved the divergence about 2500 years ago in Qinghai plateau region. According to different geographic conditions, especially altitudes, Tibetan sheep evolved into different breeds. In this study, we performed whole genome resequencing of 5 representative Tibetan sheep breeds. Comparative genomic analysis showed that they can be divided into different clades with a close genetic relationship. However, some genes with common selective regions were enriched for hypoxic adaptability in different breeds living at higher altitude, including GHR, BMP15, and CPLANE1. Furthermore, breed-specific selective regions about physical characteristics, especially wool growth, were found in genes such as BSND, USP24, NCAPG, and LCORL. This study could contribute to our understanding about trait formation and offer a reference for breeding of Tibetan sheep.
Collapse
Affiliation(s)
- Lei-Lei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shi-Ke Ma
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - You-Gui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Hai-Rui Duo
- School of Geography Science, Qinghai Normal University, Xining, 810016, China
| | - Hong-Yun Fu
- Qinghai Headquarter of Animal Husbandry Extension Station, Xining, 810008, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
7
|
Ma Y, Ma S, Chang L, Wang H, Ga Q, Ma L, Bai Z, Shen Y, Ge RL. Gut microbiota adaptation to high altitude in indigenous animals. Biochem Biophys Res Commun 2019; 516:120-126. [PMID: 31196622 DOI: 10.1016/j.bbrc.2019.05.085] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
Limited is known about role of gut microbiota in the metabolism of high-altitude-living herbivores, and potential co-evolution between gut microbiome and host genome during high altitude adaptation were not fully understood. Here, DNA from faecal samples was used to investigate the gut microbial compositions and diversity in three host species endemic to the high-altitude Tibetan plateau, the Tibetan antelope (Pantholops hodgsonii, T-antelope, 4300 m) and the Tibetan wild ass (Equus kiang, T-ass, 4300 m), and in the Tibetan sheep (Ovis aries, T-sheep) collected from two different altitudes (T-sheep [k], 4300 m and T-sheep [l] 3000 m). Ordinary sheep (O. aries, sheep) from low altitudes (1800 m) were used for comparison. 16S rRNA gene sequencing revealed that the genera Ruminococcus (22.78%), Oscillospira (20.00%), and Clostridium (10.00%) were common taxa in all high-altitude species (T-antelope, T-ass and T-sheep [k]). Ruminococcaceae, Clostridiales, Clostridia, and Firmicutes showed greater enrichment in the T-antelopes' gut microbiota than in the microbiota of lower-altitude sheep (T-sheep [l] and sheep). The T-antelopes' gut microbiota displayed a higher ratio of Firmicutes to Bacteroidetes than lower-altitude sheep (T-sheep [l] and sheep). A functional capacity analysis of the paired-end metagenomics sequences of the gut metagenomes of high-altitude T-antelopes and T-sheep annotated over 80% of the unique genes to metabolism (especially carbohydrate metabolism pathways) and genetic information processing in the Kyoto Encyclopedia of Genes and Genomes database. The gut metagenome of the T-antelope may have co-evolved with the host genomes (e.g. glycolysis and DNA repair). The higher-altitude herbivores tended to have similar gut microbial compositions, with similar functional capacities, suggesting that their gut microbiota could involved in their high-altitude adaptation.
Collapse
Affiliation(s)
- Yan Ma
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, 810001, PR China
| | - Shuang Ma
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, 810001, PR China
| | - Lan Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, PR China
| | - Haijie Wang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, 810001, PR China
| | - Qin Ga
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, 810001, PR China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, 810001, PR China
| | - Zhenzhong Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, 810001, PR China
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, 810001, PR China.
| |
Collapse
|
8
|
Li XD, Jiang GF, Yan LY, Li R, Mu Y, Deng WA. Positive Selection Drove the Adaptation of Mitochondrial Genes to the Demands of Flight and High-Altitude Environments in Grasshoppers. Front Genet 2018; 9:605. [PMID: 30568672 PMCID: PMC6290170 DOI: 10.3389/fgene.2018.00605] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
The molecular evolution of mitochondrial genes responds to changes in energy requirements and to high altitude adaptation in animals, but this has not been fully explored in invertebrates. The evolution of atmospheric oxygen content from high to low necessarily affects the energy requirements of insect movement. We examined 13 mitochondrial protein-coding genes (PCGs) of grasshoppers to test whether the adaptive evolution of genes involved in energy metabolism occurs in changes in atmospheric oxygen content and high altitude adaptation. Our molecular evolutionary analysis of the 13 PCGs in 15 species of flying grasshoppers and 13 related flightless grasshoppers indicated that, similar to previous studies, flightless grasshoppers have experienced relaxed selection. We found evidence of significant positive selection in the genes ATP8, COX3, ND2, ND4, ND4L, ND5, and ND6 in flying lineages. This results suggested that episodic positive selection allowed the mitochondrial genes of flying grasshoppers to adapt to increased energy demands during the continuous reduction of atmospheric oxygen content. Our analysis of five grasshopper endemic to the Tibetan Plateau and 13 non-Tibetan grasshoppers indicated that, due to positive selection, more non-synonymous nucleotide substitutions accumulated in Tibetan grasshoppers than in non-Tibetan grasshoppers. We also found evidence for significant positive selection in the genes ATP6, ND2, ND3, ND4, and ND5 in Tibetan lineages. Our results thus strongly suggest that, in grasshoppers, positive selection drives mitochondrial genes to better adapt both to the energy requirements of flight and to the high altitude of the Tibetan Plateau.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| | - Guo-Fang Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, China
| | - Li-Yun Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuan Mu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei-An Deng
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| |
Collapse
|
9
|
Niu L, Chen X, Xiao P, Zhao Q, Zhou J, Hu J, Sun H, Guo J, Li L, Wang L, Zhang H, Zhong T. Detecting signatures of selection within the Tibetan sheep mitochondrial genome. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:801-809. [PMID: 27937004 DOI: 10.1080/24701394.2016.1192614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tibetan sheep, a Chinese indigenous breed, are mainly distributed in plateau and mountain-valley areas at a terrestrial elevation between 2260 and 4100 m. The herd is genetically distinct from the other domestic sheep and undergoes acclimatization to adapt to the hypoxic environment. To date, whether the mitochondrial DNA modification of Tibetan sheep shares the same feature as the other domestic breed remains unknown. In this study, we compared the whole mitogenome sequences from 32 Tibetan sheep, 22 domestic sheep and 24 commercial sheep to identify the selection signatures of hypoxic-tolerant in Tibetan sheep. Nucleotide diversity analysis using the sliding window method showed that the highest level of nucleotide diversity was observed in the control region with a peak value of π = 0.05215, while the lowest π value was detected in the tRNAs region. qPCR results showed that the relative mtDNA copy number in Tibetan sheep was significantly lower than that in Suffolk sheep. None of the mutations in 12S rRNA were fixed in Tibetan sheep, which indicated that there has been less artificial selection in this herd than the other domestic and commercial breeds. Although one site (1277G) might undergo the purifying selection, it was not identified as the breed-specific allele in Tibetan sheep. We proposed that nature selection was the main drive during the domestication of Tibetan sheep and single mutation (or locus) could not reveal the signature of selection as for the high diversity in the mitogenome of Tibetan sheep.
Collapse
Affiliation(s)
- Lili Niu
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Xiaoyong Chen
- b Institute of Animal Science and Veterinary of Hebei Province , Baoding , China
| | - Ping Xiao
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Qianjun Zhao
- c CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources , Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing , China
| | - Jingxuan Zhou
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Jiangtao Hu
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Hongxin Sun
- b Institute of Animal Science and Veterinary of Hebei Province , Baoding , China
| | - Jiazhong Guo
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Li Li
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Linjie Wang
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Hongping Zhang
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Tao Zhong
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
10
|
Convergent evolution of SOCS4 between yak and Tibetan antelope in response to high-altitude stress. Gene 2015; 572:298-302. [DOI: 10.1016/j.gene.2015.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/22/2015] [Accepted: 08/10/2015] [Indexed: 10/24/2022]
|
11
|
Xin Y, Tang X, Wang H, Lu S, Wang Y, Zhang Y, Chen Q. Functional characterization and expression analysis of myoglobin in high-altitude lizard Phrynocephalus erythrurus. Comp Biochem Physiol B Biochem Mol Biol 2015; 188:31-6. [DOI: 10.1016/j.cbpb.2015.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
12
|
Molecular cloning, characterization and expression of myoglobin in Tibetan antelope (Pantholops hodgsonii), a species with hypoxic tolerance. Gene 2014; 533:532-7. [DOI: 10.1016/j.gene.2013.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/17/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
|
13
|
Tong X, Yang Y, Wang W, Bai Z, Ma L, Zheng X, Sun H, Zhang Z, Zhao M, Yu J, Ge RL. Expression profiling of abundant genes in pulmonary and cardiac muscle tissues of Tibetan Antelope (Pantholops hodgsonii). Gene X 2013; 523:187-91. [DOI: 10.1016/j.gene.2013.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 12/21/2012] [Accepted: 03/07/2013] [Indexed: 11/30/2022] Open
|