1
|
Dos Santos LG, Ferreira PI, Krause A. Mesenchymal stem cell transplantation: Systematic review, meta-analysis and clinical applications for acute kidney injury and chronic kidney disease in dogs and cats. Res Vet Sci 2024; 175:105313. [PMID: 38851051 DOI: 10.1016/j.rvsc.2024.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are diseases which affect the urinary tract characterized by the loss of renal function. Their therapy requires different therapeutic goals. Mesenchymal stem cells (MSC) transplantation has spread over the years as a treatment for many diseases. In the urinary tract, studies report anti-inflammatory, antiapoptotic, antifibrotic, antioxidant and angiogenic effects. This work reports the results of a meta-analysis about the effects of the MSC application in serum levels of creatinine in dogs and cats with AKI and CKD. The work followed PRISMA guidelines. Data were screened, selected, and extracted with characteristics about the studies. The kinds of injury were classified according to their identification and the risk of bias was calculated by the system SYRCLE. The results of each group were combined by the inverse variance method. The heterogeneity was evaluated by the I2 test. For the mean of creatinine, a meta-analysis was performed according to the study group and number of applications and separately for the control and treatment groups according to the kind of injury, dose, application route, and moment. At all, 4742 articles were found. Of these, 40 were selected for eligibility, 16 underwent qualitative analysis and 9 to the quantitative. The results denote advantage to the group treated with MSC over placebo. A statistical difference was observed both in combined analysis and in the subgroups division. However, a high heterogeneity was found, which indicates considerable variation between the studies, which indicates caution in generalize the results.
Collapse
Affiliation(s)
- Leonardo Gaspareto Dos Santos
- Federal University of Santa Maria, Veterinary Hospital, Department of Small Animal Clinic, Santa Maria, Rio Grande do Sul, Brazil
| | - Priscila Inês Ferreira
- Federal University of Santa Maria, Veterinary Hospital, Department of Small Animal Clinic, Santa Maria, Rio Grande do Sul, Brazil
| | - Alexandre Krause
- Federal University of Santa Maria, Veterinary Hospital, Department of Small Animal Clinic, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Atia MM, Alghriany AA. Adipose-derived mesenchymal stem cells rescue rat hippocampal cells from aluminum oxide nanoparticle-induced apoptosis via regulation of P53, Aβ, SOX2, OCT4, and CYP2E1. Toxicol Rep 2021; 8:1156-1168. [PMID: 34150525 PMCID: PMC8190131 DOI: 10.1016/j.toxrep.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a preventive capacity against free radical toxicity in various tissues. The present study aimed to demonstrate the reformative and treatment roles of adipose-derived MSCs (AD-MSCs) against severe toxicity in the hippocampal cells of the brain caused by aluminum oxide nanoparticles (Al2O3-NPs). Rats were divided into five experimental groups: an untreated control group, a control group receiving NaCl, a group receiving Al2O3-NPs (6 mg/kg) for 20 days, a group that was allowed to recover (R) for 20 days following treatment with Al2O3-NPs, and a Al2O3-NPs + AD-MSCs group, where each rat was injected with 0.8 × 106 AD-MSCs via the caudal vein. Oral administration of Al2O3-NPs increased the protein levels of P53, cleaved caspase-3, CYP2E1, and beta-amyloid (Aβ); contrarily, AD-MSCs transplantation downregulated the levels of these proteins. In addition, the AD-MSCs-treated hippocampal cells were protected from Al2O3-NPs-induced toxicity, as detected by the expression levels of Sox2 and Oct4 that are essential for the maintenance of self-renewal. It was also found that AD-MSCs injection significantly altered the levels of brain total peroxide and monoamine oxidase (MAO)-A and MAO-B activities. Histologically, our results indicated that AD-MSCs alleviated the severe damage in the hippocampal cells induced by Al2O3-NPs. Moreover, the role of AD-MSCs in reducing hippocampal cell death was reinforced by the regulation of P53, cleaved caspase-3, Aβ, and CYP2E1 proteins, as well as by the regulation of SOX2 and OCT4 levels and MAO-A and MAO-B activities.
Collapse
Key Words
- AD-MSCs, adipose-derived mesenchymal stem cells
- Adipose-Derived mesenchymal stem cells
- Al2O3-NPs, Aluminum oxide nanoparticles
- Aluminum oxide nanoparticles
- Apoptosis
- Aβ, amyloid beta
- EGTA, ethylene glycol tetraacetic acid
- Hippocampal cells
- MAO-A and B, monoamine oxidase A, B
- Oct4, octamer-binding transcription factor 4
- ROS, reactive oxygen species
- Sox2, sex-determining region Y-box 2
- TEM, transmission electron microscopy
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Egypt
| | - Alshaimaa A.I. Alghriany
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Egypt
| |
Collapse
|
3
|
Graves SS, Storb R. Developments and translational relevance for the canine haematopoietic cell transplantation preclinical model. Vet Comp Oncol 2020; 18:471-483. [PMID: 32385957 DOI: 10.1111/vco.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
The development of safe and reliable haematopoietic cell transplantation (HCT) protocols to treat human patients with malignant and non-malignant blood disorders was highly influenced by preclinical studies obtained in random-bred canines. The surmounted barriers included recognizing the crucial importance of histocompatibility matching, establishing long-term donor haematopoietic cell engraftment, preventing graft-vs-host disease and advancing effective conditioning and post-grafting immunosuppression protocols, all of which were evaluated in canines. Recent studies have applied the tolerance inducing potential of HCT to solid organ and vascularized composite tissue transplantation. Several advances in HCT and tolerance induction that were first developed in the canine preclinical model and subsequently applied to human patients are now being recruited into veterinary practice for the treatment of malignant and non-malignant disorders in companion dogs. Here, we review recent HCT advancements attained in the canine model during the past 15 years.
Collapse
Affiliation(s)
- Scott S Graves
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
4
|
Sherif IO, Sabry D, Abdel-Aziz A, Sarhan OM. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Res Ther 2018; 9:196. [PMID: 30021657 PMCID: PMC6052634 DOI: 10.1186/s13287-018-0946-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/10/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background The therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) against cisplatin-induced nephrotoxicity has been reported, however, its efficacy in gonadotoxicity still has not been addressed. Herein, we investigated the effect of BM-MSCs in cisplatin-induced testicular toxicity and its underlying mechanism of action. Methods Thirty male Sprague–Dawley rats were divided into a control group: injected with phosphate-buffered saline (PBS) intraperitoneal (ip), a cisplatin group: injected with a single dose of 7 mg/kg cisplatin ip to induce gonadotoxicity and a BM-MSCs group: received cisplatin ip followed by BM-MSCs injection 1 day after cisplatin. In testicular tissues, malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) levels were assessed. Additionally, gene expressions of inducible nitric oxide synthase (iNOS), caspase-3, and p38 mitogen-activated protein kinase (MAPK) were measured. The testicular tumor necrosis factor alpha (TNF-α) protein contents and Bcl-2 associated X protein (BAX) expression were determined. Histopathology of testicular tissues was examined. Results Cisplatin injection showed a significant decrease in GSH and SOD testicular levels besides a significant increase of MDA and TNF-α testicular levels and upregulation of testicular gene expressions of iNOS, caspase-3, and p38-MAPK in comparison to the control group. Moreover, a marked increase in BAX protein expression was observed in the cisplatin group when compared with the control one. Histopathological examination exhibited significant seminiferous tubules atrophy in cisplatin-treated rats. Conclusions The BM-MSCs injection significantly repaired the testicular injury and improved both biochemical and histopathological changes. The MSCs mitigated the gonadotoxicity induced by cisplatin through antioxidative, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Azza Abdel-Aziz
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Osama M Sarhan
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Bone marrow mesenchymal stem cells protect against n-hexane-induced neuropathy through beclin 1-independent inhibition of autophagy. Sci Rep 2018. [PMID: 29540747 PMCID: PMC5852116 DOI: 10.1038/s41598-018-22857-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic exposure to n-hexane, a widely used organic solvent in industry, induces central-peripheral neuropathy, which is mediated by its active metabolite, 2,5-hexanedione (HD). We recently reported that transplantation of bone marrow-mesenchymal stem cells (BMSC) significantly ameliorated HD-induced neuronal damage and motor deficits in rats. However, the mechanisms remain unclear. Here, we reported that inhibition of HD-induced autophagy contributed to BMSC-afforded protection. BMSC transplantation significantly reduced the levels of microtubule-associated protein 1 light chain 3-II (LC3-II) and the degradation of sequestosome-1 (p62) in the spinal cord and sciatic nerve of HD-intoxicated rats. Downregulation of autophagy by BMSC was also confirmed in VSC4.1 cells exposed to HD. Moreover, inhibition of autophagy by PIK III mitigated the neurotoxic effects of HD and, meanwhile, abolished BMSC-afforded neuroprotection. Furthermore, we found that BMSC failed to interfere with Beclin 1, but promoted activation of mammalian target of rapamycin (mTOR). Unc-like kinse 1 (ULK1) was further recognized as the downstream target of mTOR responsible for BMSC-mediated inhibition of autophagy. Altogether, BMSC transplantation potently ameliorated HD-induced autophagy through beclin 1-independent activation of mTOR pathway, providing a novel insight for the therapeutic effects of BMSC against n-hexane and other environmental toxicants-induced neurotoxicity.
Collapse
|
6
|
Večerić-Haler Ž, Cerar A, Perše M. (Mesenchymal) Stem Cell-Based Therapy in Cisplatin-Induced Acute Kidney Injury Animal Model: Risk of Immunogenicity and Tumorigenicity. Stem Cells Int 2017; 2017:7304643. [PMID: 29379525 PMCID: PMC5742889 DOI: 10.1155/2017/7304643] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenesis of AKI is complex and involves both local events in the kidney as well as systemic effects in the body that are interconnected and interdependent. Despite intensive investigations there is still no pharmacological agent that could provide complete protection against cisplatin nephrotoxicity. In the last decade mesenchymal stem cells (MSCs) have been proposed as a potentially useful therapeutic strategy in various diseases, including acute kidney injury. Although MSCs have potent immunosuppressive properties, animal studies also suggest that transplanted MSCs may elicit immune response. Interestingly, tumorigenicity of transplanted MSCs in animal studies has been rarely studied. Since the risk of tumorigenicity of particular therapy as well as the immune response to solid or cell grafts is a major issue in clinical trials, the aim of the present paper is to critically summarize the results of MSC transplantation on animal models of AKI, particularly cisplatin-induced animal models, and to expose results and main concerns about immunogenicity and tumorigenicity of transplanted MSCs, two important issues that need to be addressed in future studies.
Collapse
Affiliation(s)
- Ž. Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - A. Cerar
- Institute of Pathology, Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1105 Ljubljana, Slovenia
| | - M. Perše
- Institute of Pathology, Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1105 Ljubljana, Slovenia
| |
Collapse
|
7
|
Bone marrow mesenchymal stem cells attenuate 2,5-hexanedione-induced neuronal apoptosis through a NGF/AKT-dependent pathway. Sci Rep 2016; 6:34715. [PMID: 27703213 PMCID: PMC5050456 DOI: 10.1038/srep34715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/13/2016] [Indexed: 02/04/2023] Open
Abstract
Growing evidence suggests that the increased neuronal apoptosis is involved in n-hexane-induced neuropathy. We have recently reported that bone marrow-mesenchymal stem cells-derived conditioned medium (BMSC-CM) attenuated 2,5-hexanedione (HD, the active metabolite of n-hexane)-induced apoptosis in PC12 cells. Here, we explored the anti-apoptotic efficacy of BMSC in vivo. HD-treated rats received BMSC by tail vein injection 5 weeks after HD intoxication. We found that in grafted rats, BMSC significantly attenuated HD-induced neuronal apoptosis in the spinal cord, which was associated with elevation of nerve growth factor (NGF). Neutralization of NGF in BMSC-CM blocked the protection against HD-induced apoptosis in VSC4.1 cells, suggesting that NGF is essential for BMSC-afforded anti-apoptosis. Mechanistically, we found that the decreased activation of Akt induced by HD was significantly recovered in the spinal cord by BMSC and in VSC4.1 cells by BMSC-CM in a TrkA-dependent manner, leading to dissociation of Bad/Bcl-xL complex in mitochondria and release of anti-apoptotic Bcl-xL. The importance of Akt was further corroborated by showing the reduced anti-apoptotic potency of BMSC in HD-intoxicated VSC4.1 cells in the presence of Akt inhibitor, MK-2206. Thus, our findings show that BMSC attenuated HD-induced neuronal apoptosis in vivo through a NGF/Akt-dependent manner, providing a novel solution against n-hexane-induced neurotoxicity.
Collapse
|