1
|
Grzeczka A, Graczyk S, Kordowitzki P. Pleiotropic Effects of Resveratrol on Aging-Related Cardiovascular Diseases-What Can We Learn from Research in Dogs? Cells 2024; 13:1732. [PMID: 39451250 PMCID: PMC11505706 DOI: 10.3390/cells13201732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Resveratrol (RES) is a polyphenol with natural anti-inflammatory and antioxidant properties. It is found in abundance in plants, i.e., grapes and mulberry fruit. In addition, synthetic forms of RES exist. Since the discovery of its specific biological properties, RES has emerged as a candidate substance not only with modeling effects on the immune response but also as an important factor in preventing the onset and progression of cardiovascular disease (CVD). Previous research provided strong evidence of the effects of RES on platelets, mitochondria, cardiomyocytes, and vascular endothelial function. In addition, RES positively affects the coagulation system and vasodilatory function and improves blood flow. Not only in humans but also in veterinary medicine, cardiovascular diseases have one of the highest incidence rates. Canine and human species co-evolved and share recent evolutionary selection processes, and interestingly, numerous pathologies of companion dogs have a human counterpart. Knowledge of the impact of RES on the cardiovascular system of dogs is becoming clearer in the literature. Dogs have long been recognized as valuable animal models for the study of various human diseases as they share many physiological and genetic similarities with humans. In this review, we aim to shed light on the pleiotropic effects of resveratrol on cardiovascular health in dogs as a translational model for human cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (A.G.)
| |
Collapse
|
2
|
Carter RT, Swetledge S, Navarro S, Liu CC, Ineck N, Lewin AC, Donnarumma F, Bodoki E, Stout RW, Astete C, Jung JP, Sabliov CM. The impact of lutein-loaded poly(lactic-co-glycolic acid) nanoparticles following topical application: An in vitro and in vivo study. PLoS One 2024; 19:e0306640. [PMID: 39088452 PMCID: PMC11293729 DOI: 10.1371/journal.pone.0306640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 08/03/2024] Open
Abstract
Antioxidant therapies are of interest in the prevention and management of ocular disorders such as cataracts. Although an active area of interest, topical therapy with antioxidants for the treatment of cataracts is complicated by multiple ocular anatomical barriers, product stability, and solubility. Entrapment and delivery of antioxidants with poly(lactic-co-glycolic acid) nanoparticles is a possible solution to these challenges, however, little is known regarding their effects in vitro or in vivo. Our first aim was to investigate the impact of blank and lutein loaded PLGA nanoparticles on viability and development of reactive oxygen species in lens epithelial cells in vitro. Photo-oxidative stress was induced by ultraviolet light exposure with cell viability and reactive oxygen species monitored. Next, an in vivo, selenite model was utilized to induce cataract formation in rodents. Eyes were treated topically with both free lutein and lutein loaded nanoparticles (LNP) at varying concentrations. Eyes were monitored for the development of anterior segment changes and cataract formation. The ability of nanodelivered lutein to reach the anterior segment of the eye was evaluated by liquid chromatography coupled to mass spectrometry of aqueous humor samples and liquid chromatography coupled to tandem mass spectrometry (targeted LC-MS/MS) of lenses. LNP had a minimal impact on the viability of lens epithelial cells during the short exposure timeframe (24 h) and at concentrations < 0.2 μg LNP/μl. A significant reduction in the development of reactive oxygen species was also noted. Animals treated with LNPs at an equivalent lutein concentration of 1,278 μg /mL showed the greatest reduction in cataract scores. Lutein delivery to the anterior segment was confirmed through evaluation of aqueous humor and lens sample evaluation. Topical treatment was not associated with the development of secondary keratitis or anterior uveitis when applied once daily for one week. LNPs may be an effective in the treatment of cataracts.
Collapse
Affiliation(s)
- Renee T. Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sean Swetledge
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sara Navarro
- Department of Entomology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Chin-C. Liu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nikole Ineck
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Andrew C. Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ede Bodoki
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Rhett W. Stout
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Carlos Astete
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jangwook P. Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Cristina M. Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
3
|
Silva MM, Campos TA, Cavalcanti IMF, Oliveira IS, Pérez CD, Silva RADA, Wanderley MSO, Santos NPS. Proteomic characterization and biological activities of the mucus produced by the zoanthid Palythoa caribaeorum (Duchassaing & Michelotti, 1860). AN ACAD BRAS CIENC 2023; 95:e20200325. [PMID: 38055606 DOI: 10.1590/0001-3765202320200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/22/2020] [Indexed: 12/08/2023] Open
Abstract
Mucus, produced by Palythoa caribaeorum has been popularly reported due to healing, anti-inflammatory, and analgesic effects. However, biochemical and pharmacological properties of this mucus remains unexplored. Therefore, the present study aimed to study its proteome profile by 2DE electrophoresis and MALDI-TOF. Furthermore, it was evaluated the cytotoxic, antibacterial, and antioxidant activities of the mucus and from its protein extract (PE). Proteomics study identified14 proteins including proteins involved in the process of tissue regeneration and death of tumor cells. The PE exhibited cell viability below 50% in the MCF-7 and S-180 strains. It showed IC50 of 6.9 μg/mL for the J774 lineage, and also, favored the cellular growth of fibroblasts. Furthermore, PE revealed activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Staphylococcus epidermidis (MIC of 250 μg/mL). These findings revealed the mucus produced by Palythoa caribaeorum with biological activities, offering alternative therapies for the treatment of cancer and as a potential antibacterial agent.
Collapse
Affiliation(s)
- Marllyn M Silva
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Thiers A Campos
- Centro Tecnológico do Nordeste, Av. Prof. Luís Freire, 1, Cidade Universitária, 50740-545 Recife, PE, Brazil
| | - Isabella M F Cavalcanti
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
- Universidade Federal de Pernambuco, Instituto Keizo-Asami (iLIKA), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Idjane S Oliveira
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Carlos Daniel Pérez
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Roberto Afonso DA Silva
- Universidade Federal de Pernambuco, Instituto Keizo-Asami (iLIKA), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Marcela S O Wanderley
- Universidade de Pernambuco, Campus Santo Amaro, Instituto de Ciências Biológicas, Arnóbio Marques, 310, Santo Amaro, 50100-130 Recife, PE, Brazil
| | - Noemia P S Santos
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| |
Collapse
|
4
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
5
|
Park S, Kang S, Yoo S, Park Y, Seo K. Effect of oral antioxidants on the progression of canine senile cataracts: a retrospective study. J Vet Sci 2022; 23:e43. [PMID: 35466599 PMCID: PMC9149495 DOI: 10.4142/jvs.21275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cataracts are the leading cause of impaired vision or blindness in dogs. There are many antioxidants that can prevent cataract progression, but whether they are clinically effective in dogs has not been established. Objectives To analyze the delaying or preventing effect of oral antioxidants on canine senile cataracts through retrospective analysis. Methods Medical records of dogs from January 1, 2015 to July 10, 2020 were reviewed. Dogs that were 8 yr of age or older with senile cataracts were included in this study. The dogs were divided into two treatment groups (dogs administered with Ocu-GLO supplement and dogs administered with Meni-One Eye R/C supplement) and a control group (dogs that were not administered any supplement). Dogs with incipient and immature cataracts were included in this study. Altogether, 112 dogs (156 eyes) with incipient cataracts and 60 dogs (77 eyes) with immature cataracts were included. The period of time that cataracts progressed from incipient to immature, and from immature to mature was recorded for each dog. Results There was no significant delaying effect on the progression of incipient cataracts. However, both Ocu-GLO (hazard ratio = 0.265, p = 0.026) and Meni-One (hazard ratio = 0.246, p = 0.005) significantly delayed the progression of immature cataracts compared to the control group. Conclusions Although there was no significant delaying effect of oral antioxidants on incipient cataract progression, antioxidants could be used to delay the progression of senile immature cataract.
Collapse
Affiliation(s)
- Sanghyun Park
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Seonmi Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Sukjong Yoo
- Yoolim Animal Eye Clinic, Seoul 06524, Korea
| | | | - Kangmoon Seo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Różanowska MB, Czuba-Pelech B, Landrum JT, Różanowski B. Comparison of Antioxidant Properties of Dehydrolutein with Lutein and Zeaxanthin, and their Effects on Cultured Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2021; 10:antiox10050753. [PMID: 34068492 PMCID: PMC8151661 DOI: 10.3390/antiox10050753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Dehydrolutein accumulates in substantial concentrations in the retina. The aim of this study was to compare antioxidant properties of dehydrolutein with other retinal carotenoids, lutein, and zeaxanthin, and their effects on ARPE-19 cells. The time-resolved detection of characteristic singlet oxygen phosphorescence was used to compare the singlet oxygen quenching rate constants of dehydrolutein, lutein, and zeaxanthin. The effects of these carotenoids on photosensitized oxidation were tested in liposomes, where photo-oxidation was induced by light in the presence of photosensitizers, and monitored by oximetry. To compare the uptake of dehydrolutein, lutein, and zeaxanthin, ARPE-19 cells were incubated with carotenoids for up to 19 days, and carotenoid contents were determined by spectrophotometry in cell extracts. To investigate the effects of carotenoids on photocytotoxicity, cells were exposed to light in the presence of rose bengal or all-trans-retinal. The results demonstrate that the rate constants for singlet oxygen quenching are 0.77 × 1010, 0.55 × 1010, and 1.23 × 1010 M-1s-1 for dehydrolutein, lutein, and zeaxanthin, respectively. Overall, dehydrolutein is similar to lutein or zeaxanthin in the protection of lipids against photosensitized oxidation. ARPE-19 cells accumulate substantial amounts of both zeaxanthin and lutein, but no detectable amounts of dehydrolutein. Cells pre-incubated with carotenoids are equally susceptible to photosensitized damage as cells without carotenoids. Carotenoids provided to cells together with the extracellular photosensitizers offer partial protection against photodamage. In conclusion, the antioxidant properties of dehydrolutein are similar to lutein and zeaxanthin. The mechanism responsible for its lack of accumulation in ARPE-19 cells deserves further investigation.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Correspondence: ; Tel.: +44-292-087-5057
| | - Barbara Czuba-Pelech
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - John T. Landrum
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | | |
Collapse
|
7
|
Hopper RG, Montiani-Ferreira F, da Silva Pereira J, Fritz MC, Ruggiero VJ, Sapienza JS, Kato K, Komáromy AM. Presumed neuroprotective therapies prescribed by veterinary ophthalmologists for canine degenerative retinal and optic nerve diseases. Vet Ophthalmol 2021; 24:229-239. [PMID: 33682296 DOI: 10.1111/vop.12878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate veterinary ophthalmologists' use of presumed neuroprotective therapies for degenerative retinal and optic nerve diseases in dogs. PROCEDURES An online survey was sent to 663 board-certified veterinary ophthalmologists who were Diplomates of the American College of Veterinary Ophthalmologists (ACVO), Asian College of Veterinary Ophthalmologists (AiCVO), Latin American College of Veterinary Ophthalmologists (Colegio Latinoamericano de Oftalmólogos Veterinarios, CLOVE), or European College of Veterinary Ophthalmologists (ECVO). The survey was created using Qualtrics® software and focused on the prescription of presumed neuroprotective treatments for canine glaucoma, sudden acquired retinal degeneration syndrome (SARDS), progressive retinal atrophy (PRA), and retinal detachment (RD). RESULTS A total of 165 completed surveys were received, representing an overall response rate of 25%, which was comparable across the four specialty colleges. Of all respondents, 140/165 (85%) prescribed some form of presumed neuroprotective therapies at least once in the last five years: 114/165 (69%) for glaucoma, 51/165 (31%) for SARDS, 116/165 (70%) for PRA, and 50/165 (30%) for RD. The three most recommended neuroprotective reagents were the commercial Ocu-GLO™ Vision Supplement for animals, amlodipine, and human eye supplements. CONCLUSIONS Despite lack of published clinical efficacy data, the majority of surveyed board-certified veterinary ophthalmologists previously prescribed a presumed neuroprotective therapy at least once in the last five years in dogs with degenerative retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Ryan G Hopper
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | | - Jorge da Silva Pereira
- Center of Studies, Research, and Veterinary Ophthalmology (CEPOV), Rio de Janeiro, Brazil
| | - Michele C Fritz
- Office of Academic Programs, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Vickie J Ruggiero
- Office of Academic Programs, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | | | | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|