Ma Y, Peng S, Donnelly CG, Ghosh S, Miller AD, Woolard K, Finno CJ. Genetic polymorphisms in vitamin E transport genes as determinants for risk of equine neuroaxonal dystrophy.
J Vet Intern Med 2024;
38:417-423. [PMID:
37937700 PMCID:
PMC10800183 DOI:
10.1111/jvim.16924]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND
Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is an inherited neurodegenerative disorder associated with vitamin E deficiency. In humans, polymorphisms in genes involved in vitamin E uptake and distribution determines individual vitamin E requirements.
HYPOTHESIS/OBJECTIVES
Genetic polymorphisms in genes involved in vitamin E metabolism would be associated with an increased risk of eNAD/EDM in Quarter Horses (QHs).
ANIMALS
Whole-genome sequencing: eNAD/EDM affected (n = 9, postmortem [PM]-confirmed) and control (n = 32) QHs.
VALIDATION
eNAD/EDM affected (n = 39, 23-PM confirmed) and control (n = 68, 7-PM confirmed) QHs. Allele frequency (AF): Publicly available data from 504 horses across 47 breeds.
METHODS
Retrospective, case control study. Whole-genome sequencing was performed and genetic variants identified within 28 vitamin E candidate genes. These variants were subsequently genotyped in the validation cohort.
RESULTS
Thirty-nine confirmed variants in 15 vitamin E candidate genes were significantly associated with eNAD/EDM (P < .01). In the validation cohort, 2 intronic CD36 variants (chr4:726485 and chr4:731082) were significantly associated with eNAD/EDM in clinical (P = 2.78 × 10-4 and P = 4 × 10-4 , respectively) and PM-confirmed cases (P = 6.32 × 10-6 and 1.04 × 10-5 , respectively). Despite the significant association, variant AFs were low in the postmortem-confirmed eNAD/EDM cases (0.22-0.26). In publicly available equine genomes, AFs ranged from 0.06 to 0.1.
CONCLUSIONS AND CLINICAL IMPORTANCE
Many PM-confirmed cases of eNAD/EDM were wild-type for the 2 intronic CD36 SNPs, suggesting either a false positive association or genetic heterogeneity of eNAD/EDM within the QH breed.
Collapse