1
|
Bokulic Panichi L, Stanca S, Dolciotti C, Bongioanni P. The Role of Oligodendrocytes in Neurodegenerative Diseases: Unwrapping the Layers. Int J Mol Sci 2025; 26:4623. [PMID: 40429767 DOI: 10.3390/ijms26104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis/motor neuron disease, and multiple sclerosis, are characterized by progressive loss of neuronal structure and function, leading to severe cognitive, motor, and behavioral impairments. They pose a significant and growing challenge due to their rising prevalence and impact on global health systems. The societal and emotional toll on patients, caregivers, and healthcare infrastructures is considerable. While significant progress has been made in elucidating the pathological hallmarks of these disorders, the underlying cellular and molecular mechanisms remain incompletely understood. Increasing evidence implicates oligodendrocytes and their progenitors-oligodendrocyte progenitor cells (OPCs)-in the pathogenesis of several NDs, beyond their traditionally recognized role in demyelinating conditions such as MS. Oligodendrocytes are essential for axonal myelination, metabolic support, and neural circuit modulation in the central nervous system. Disruptions in oligodendrocyte function and myelin integrity-manifesting as demyelination, hypomyelination, or dysmyelination-have been associated with disease progression in various neurodegenerative contexts. This review consolidates recent findings on the role of OPCs in NDs, explores the concept of myelin plasticity, and discusses therapeutic strategies targeting oligodendrocyte dysfunction. By highlighting emerging research in oligodendrocyte biology, this review aims to provide a short overview of its relevance to neurodegenerative disease progression and potential therapeutic advances.
Collapse
Affiliation(s)
- Leona Bokulic Panichi
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- NeuroCare Onlus, 56124 Pisa, Italy
| | - Stefano Stanca
- NeuroCare Onlus, 56124 Pisa, Italy
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Cristina Dolciotti
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Paolo Bongioanni
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- NeuroCare Onlus, 56124 Pisa, Italy
| |
Collapse
|
2
|
Tse KH, Herrup K. DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 2016; 161:37-50. [PMID: 27235538 DOI: 10.1016/j.mad.2016.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
3
|
Yang E, Prabhu SP. Imaging manifestations of the leukodystrophies, inherited disorders of white matter. Radiol Clin North Am 2014; 52:279-319. [PMID: 24582341 DOI: 10.1016/j.rcl.2013.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The leukodystrophies are a diverse set of inherited white matter disorders and are uncommonly encountered by radiologists in everyday practice. As a result, it is challenging to recognize these disorders and to provide a useful differential for the referring physician. In this article, leukodystrophies are reviewed from the perspective of 4 imaging patterns: global myelination delay, periventricular/deep white matter predominant, subcortical white matter predominant, and mixed white/gray matter involvement patterns. Special emphasis is placed on pattern recognition and unusual combinations of findings that may suggest a specific diagnosis.
Collapse
Affiliation(s)
- Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
Baez S, Couto B, Herrera E, Bocanegra Y, Trujillo-Orrego N, Madrigal-Zapata L, Cardona JF, Manes F, Ibanez A, Villegas A. Tracking the Cognitive, Social, and Neuroanatomical Profile in Early Neurodegeneration: Type III Cockayne Syndrome. Front Aging Neurosci 2013; 5:80. [PMID: 24324434 PMCID: PMC3840614 DOI: 10.3389/fnagi.2013.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/08/2013] [Indexed: 12/30/2022] Open
Abstract
Cockayne syndrome (CS) is an autosomal recessive disease associated with premature aging, progressive multiorgan degeneration, and nervous system abnormalities including cerebral and cerebellar atrophy, brain calcifications, and white matter abnormalities. Although several clinical descriptions of CS patients have reported developmental delay and cognitive impairment with relative preservation of social skills, no previous studies have carried out a comprehensive neuropsychological and social cognition assessment. Furthermore, no previous research in individuals with CS has examined the relationship between brain atrophy and performance on neuropsychological and social cognition tests. This study describes the case of an atypical late-onset type III CS patient who exceeds the mean life expectancy of individuals with this pathology. The patient and a group of healthy controls underwent a comprehensive assessment that included multiple neuropsychological and social cognition (emotion recognition, theory of mind, and empathy) tasks. In addition, we compared the pattern of atrophy in the patient to controls and to its concordance with ERCC8 gene expression in a healthy brain. The results showed memory, language, and executive deficits that contrast with the relative preservation of social cognition skills. The cognitive profile of the patient was consistent with his pattern of global cerebral and cerebellar loss of gray matter volume (frontal structures, bilateral cerebellum, basal ganglia, temporal lobe, and occipito-temporal/occipito-parietal regions), which in turn was anatomically consistent with the ERCC8 gene expression level in a healthy donor’s brain. The study of exceptional cases, such as the one described here, is fundamental to elucidating the processes that affect the brain in premature aging diseases, and such studies provide an important source of information for understanding the problems associated with normal and pathological aging.
Collapse
Affiliation(s)
- Sandra Baez
- Laboratory of Experimental Psychology & Neuroscience (LPEN), Institute of Cognitive Neurology (INECO) & Institute of Neuroscience, Favaloro University , Buenos Aires , Argentina . ; National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina ; Pontifical Catholic University of Argentina , Buenos Aires , Argentina ; UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University , Santiago , Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Magnetic resonance imaging biomarkers in patients with progressive ataxia: current status and future direction. THE CEREBELLUM 2013; 12:245-66. [PMID: 22828959 DOI: 10.1007/s12311-012-0405-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A diagnostic challenge commonly encountered in neurology is that of an adult patient presenting with ataxia. The differential is vast and clinical assessment alone may not be sufficient due to considerable overlap between different causes of ataxia. Magnetic resonance (MR)-based biomarkers such as voxel-based morphometry, MR spectroscopy, diffusion-weighted and diffusion-tensor imaging and functional MR imaging are gaining great attention for their potential as indicators of disease. A number of studies have reported correlation with clinical severity and underlying pathophysiology, and in some cases, MR imaging has been shown to allow differentiation of conditions causing ataxia. However, despite recent advances, their sensitivity and specificity vary. In addition, questions remain over their validity and reproducibility, especially when applied in routine clinical practice. This article extensively reviews the current literature regarding MR-based biomarkers for the patient with predominantly adult-onset ataxia. Imaging features characteristic of a particular ataxia are provided and features differentiating ataxia groups and subgroups are discussed. Finally, discussion will turn to the feasibility of applying these biomarkers in routine clinical practice.
Collapse
|
6
|
Kuki I, Kawawaki H, Okazaki S, Kimura-Ohba S, Nakano T, Fukushima H, Inoue T, Tomiwa K, Itoh M. Progressive leukoencephalopathy with intracranial calcification, congenital deafness, and developmental deterioration. Am J Med Genet A 2011; 155A:2832-7. [PMID: 21964701 DOI: 10.1002/ajmg.a.34256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/27/2011] [Indexed: 11/08/2022]
Abstract
We report on a 12-year-old male with a unique cerebral white matter disease. His initial symptoms were congenital hearing loss and multiple intracranial calcifications on head CT. He developed severe intellectual disability and epilepsy. MRI showed signal abnormalities in the posterior limbs of the internal capsules, thalami, and cerebral white matter. The abnormalities were progressive over time. The neuropathology revealed diffuse and severe disruption of myelin and axons of the cerebral white matter and cerebrospinal tracts. We performed various metabolic examinations, detailed pathological investigations and genetic analyses, but could not identify the cause. To our knowledge his clinical course has not been described in the literature.
Collapse
Affiliation(s)
- Ichiro Kuki
- Department of Pediatrics, Medical Center for Children, Osaka City General Hospital, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Natale V. A comprehensive description of the severity groups in Cockayne syndrome. Am J Med Genet A 2011; 155A:1081-95. [PMID: 21480477 DOI: 10.1002/ajmg.a.33933] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 11/24/2010] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome (CS) is a rare degenerative disorder with a common set of symptoms but a very wide variation in phenotype. The variation is sufficiently wide that CS patients have traditionally been described in three different severity groups. Unfortunately, there is no single source for information about the different severity groups. This problem can complicate not only diagnosis, but accurate prognosis as well. The goal of this study was to describe the phenotypic variation in CS as completely as possible. This article provides extensive descriptions of traits common to each group and their degree of severity in each group. Forty-five people with CS were surveyed and information from the published literature was used to increase the sample sizes for calculations. This study provides new information, including statistical data for each of the three severity groups (mean age at death, average head circumference, and average length or stature). The study includes cerebro-oculo-facial syndrome (COFS) as a severe form of CS, based on results of recently published genetic studies performed by other authors. This study proposes revised names for CS severity groups: severe, moderate, and mild. The groups were formerly called Type II/early onset CS, Type I/classical CS, and Type III/atypical/mild/late-onset CS, respectively. A fourth newly documented group, UV sensitivity only/adult onset, is also described. Average ages of death were calculated as 5.0 years (severe), 16.1 years (moderate), and 30.3 years (mild).
Collapse
|
8
|
Kohlschütter A, Bley A, Brockmann K, Gärtner J, Krägeloh-Mann I, Rolfs A, Schöls L. Leukodystrophies and other genetic metabolic leukoencephalopathies in children and adults. Brain Dev 2010; 32:82-9. [PMID: 19427149 DOI: 10.1016/j.braindev.2009.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/21/2009] [Accepted: 03/22/2009] [Indexed: 11/17/2022]
Abstract
Abnormalities of CNS white matter are frequently detected in patients with neurological disorders when MRI studies are performed. Among the many causes of such abnormalities, a large group of rare genetic diseases poses considerable diagnostic problems. Here we present a compilation of genetic leukoencephalopathies to consider when one is confronted with white matter disease of possibly genetic origin. The table contains essentials such as age at onset of symptoms, clinical and MRI characteristics, basic defect, and useful diagnostic studies. The table serves as a diagnostic check list.
Collapse
|
9
|
Abdel Razek AAK, Kandell AY, Elsorogy LG, Elmongy A, Basett AA. Disorders of cortical formation: MR imaging features. AJNR Am J Neuroradiol 2008; 31:1623-30. [PMID: 18687750 DOI: 10.3174/ajnr.a2135] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this article was to review the embryologic stages of the cerebral cortex, illustrate the classification of disorders of cortical formation, and finally describe the main MR imaging features of these disorders. Disorders of cortical formation are classified according to the embryologic stage of the cerebral cortex at which the abnormality occurred. MR imaging shows diminished cortical thickness and sulcation in microcephaly, enlarged dysplastic cortex in hemimegalencephaly, and ipsilateral focal cortical thickening with radial hyperintense bands in focal cortical dysplasia. MR imaging detects smooth brain in classic lissencephaly, the nodular cortex with cobblestone cortex with congenital muscular dystrophy, and the ectopic position of the gray matter with heterotopias. MR imaging can detect polymicrogyria and related syndromes as well as the types of schizencephaly. We concluded that MR imaging is essential to demonstrate the morphology, distribution, and extent of different disorders of cortical formation as well as the associated anomalies and related syndromes.
Collapse
Affiliation(s)
- A A K Abdel Razek
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
10
|
Khan F, Chemmanam T, Mathuranath PS. Cockayne syndrome. Ann Indian Acad Neurol 2008; 11:125-6. [PMID: 19893654 PMCID: PMC2771958 DOI: 10.4103/0972-2327.41884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 11/04/2022] Open
Affiliation(s)
- Firosh Khan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | | | | |
Collapse
|