1
|
Correa Londono M, Trussardi N, Obmann VC, Piccini D, Ith M, von Tengg-Kobligk H, Jung B. Radial self-navigated native magnetic resonance angiography in comparison to navigator-gated contrast-enhanced MRA of the entire thoracic aorta in an aortic patient collective. J Cardiovasc Magn Reson 2021; 23:94. [PMID: 34247640 PMCID: PMC8274024 DOI: 10.1186/s12968-021-00774-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The native balanced steady state with free precession (bSSFP) magnetic resonance angiography (MRA) technique has been shown to provide high diagnostic image quality for thoracic aortic disease. This study compares a 3D radial respiratory self-navigated native MRA (native-SN-MRA) based on a bSSFP sequence with conventional Cartesian, 3D, contrast-enhanced MRA (CE-MRA) with navigator-gated respiration control for image quality of the entire thoracic aorta. METHODS Thirty-one aortic native-SN-MRA were compared retrospectively (63.9 ± 10.3 years) to 61 CE-MRA (63.1 ± 11.7 years) serving as a reference standard. Image quality was evaluated at the aortic root/ascending aorta, aortic arch and descending aorta. Scan time was recorded. In 10 patients with both MRA sequences, aortic pathologies were evaluated and normal and pathologic aortic diameters were measured. The influence of artifacts on image quality was analyzed. RESULTS Compared to the overall image quality of CE-MRA, the overall image quality of native-SN-MRA was superior for all segments analyzed (aortic root/ascending, p < 0.001; arch, p < 0.001, and descending, p = 0.005). Regarding artifacts, the image quality of native-SN-MRA remained superior at the aortic root/ascending aorta and aortic arch before and after correction for confounders of surgical material (i.e., susceptibility-related artifacts) (p = 0.008 both) suggesting a benefit in terms of motion artifacts. Native-SN-MRA showed a trend towards superior intraindividual image quality, but without statistical significance. Intraindividually, the sensitivity and specificity for the detection of aortic disease were 100% for native-SN-MRA. Aortic diameters did not show a significant difference (p = 0.899). The scan time of the native-SN-MRA was significantly reduced, with a mean of 05:56 ± 01:32 min vs. 08:51 ± 02:57 min in the CE-MRA (p < 0.001). CONCLUSIONS Superior image quality of the entire thoracic aorta, also regarding artifacts, can be achieved with native-SN-MRA, especially in motion prone segments, in addition to a shorter acquisition time.
Collapse
Affiliation(s)
- Martina Correa Londono
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
| | - Nino Trussardi
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Verena C Obmann
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Ith
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Experimental Radiology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| |
Collapse
|
2
|
Yu S, Cui C, Lu M, Zhao S. Diagnostic Accuracy of Three-Dimensional Whole-Heart Magnetic Resonance Angiography to Detect Coronary Artery Disease with Invasive Coronary Angiography as a Reference: A Meta-Analysis. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2020. [DOI: 10.15212/cvia.2019.0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: We aimed to evaluate the diagnostic performance of three-dimensional whole-heart magnetic resonance coronary angiography (MRCA) in detecting coronary artery disease (CAD) with invasive coronary angiography as the reference standard.Methods: We searched PubMed
and Embase for studies evaluating the diagnostic performance of three-dimensional whole-heart MRCA for the diagnosis of CAD with invasive coronary angiography as the reference standard. The bivariate mixed-effects regression model was applied to synthesize available data. The clinical utility
of whole-heart MRCA was calculated by the posttest probability based on Bayes’s theorem.Results: Eighteen studies were included, of which 16 provided data at the artery level. Patient-based analysis revealed a pooled sensitivity of 0.90 (95% confidence interval [CI] 0.87‐0.93)
and specificity of 0.79 (95% CI 0.73‐0.84), while the pooled estimates were 0.86 (95% CI 0.82‐0.89) and 0.89 (95% CI 0.84‐0.92), respectively, at the artery level. The areas under the summary receiver operating characteristic curve were 0.93 (95% CI 0.90‐0.95) and
0.92 (95% CI 0.90‐0.94) at the patient and artery levels, respectively. With a pretest probability of 50%, the patients’ posttest probabilities of CAD were 81% for positive results and 11% for negative results.Conclusions: Whole-heart MRCA can be an alternative noninvasive
method for diagnosis and assessment of CAD.
Collapse
Affiliation(s)
- Shiqin Yu
- Department of Cardiac MR, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, 100037 Beijing, People’s Republic of China
| | - Chen Cui
- Department of Cardiac MR, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, 100037 Beijing, People’s Republic of China
| | - Minjie Lu
- Department of Cardiac MR, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, 100037 Beijing, People’s Republic of China
| | - Shihua Zhao
- Department of Cardiac MR, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, 100037 Beijing, People’s Republic of China
| |
Collapse
|
3
|
Francone M. Role of cardiac magnetic resonance in the evaluation of dilated cardiomyopathy: diagnostic contribution and prognostic significance. ISRN RADIOLOGY 2014; 2014:365404. [PMID: 24967294 PMCID: PMC4045555 DOI: 10.1155/2014/365404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
Abstract
Dilated cardiomyopathy (DCM) represents the final common morphofunctional pathway of various pathological conditions in which a combination of myocyte injury and necrosis associated with tissue fibrosis results in impaired mechanical function. Recognition of the underlying aetiology of disease and accurate disease monitoring may be crucial to individually optimize therapeutic strategies and stratify patient's prognosis. In this regard, CMR has emerged as a new reference gold standard providing important information for differential diagnosis and new insight about individual risk stratification. The present review article will focus on the role of CMR in the evaluation of present condition, analysing respective strengths and limitations in the light of current literature and technological developments.
Collapse
Affiliation(s)
- Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena, 324 00161 Rome, Italy
| |
Collapse
|
4
|
Börnert P, Koken P, Nehrke K, Eggers H, Ostendorf P. Water/fat-resolved whole-heart Dixon coronary MRA: An initial comparison. Magn Reson Med 2013; 71:156-63. [DOI: 10.1002/mrm.24648] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/10/2012] [Accepted: 12/25/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Peter Börnert
- Philips Research Europe; Hamburg Germany
- Department of Radiology; Leiden University Medical Center; Leiden The Netherlands
| | | | - Kay Nehrke
- Philips Research Europe; Hamburg Germany
| | | | - Peter Ostendorf
- Centre of Preventive Medicine; Marienkrankenhaus Hamburg Germany
| |
Collapse
|
5
|
Abstract
'Multimodality' imaging--the side-by-side interpretation of data obtained from various noninvasive imaging techniques, such as echocardiography, radionuclide techniques, multidetector CT (MDCT), and MRI--allows anatomical, morphological, and functional data to be combined, increases diagnostic accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. During the past decade, advances in software and hardware have allowed co-registration of various imaging modalities, resulting in cardiac 'hybrid' or 'fusion' imaging. In this Review, we discuss the roles of both multimodality and hybrid imaging in three broad areas of cardiology--coronary artery disease (CAD), heart failure, and valvular heart disease. In the evaluation of CAD, integration of either single-photon emission computed tomography (SPECT) or PET with CT coronary angiography provides both morphological and functional data in a single procedure. Accordingly, the functional consequences (myocardial hypoperfusion on SPECT or PET) of anatomical pathology (coronary anatomy on MDCT or MRI) can be assessed. Co-registration of PET and MRI data sets to provide cellular and molecular information on plaque composition and stability is now possible. Furthermore, novel imaging modalities have been implemented to guide electrophysiological and transcatheter-based procedures, such as cardiac resynchronization therapy (an established treatment for patients with heart failure), and transcatheter valve repair or replacement procedures.
Collapse
|
6
|
Shah DJ, Lim TH. Evaluation of meglumine gadoterate-enhanced MR angiography (MRA) compared with time-of-flight MRA in the diagnosis of clinically significant non-coronary arterial disease: a pooled analysis of data from two clinical trials. Br J Radiol 2011; 85:596-605. [PMID: 22167518 DOI: 10.1259/bjr/16406056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES We analysed pooled data from two clinical trials to assess the diagnostic accuracy and safety of meglumine gadoterate (Gd-DOTA)-enhanced MR angiography (MRA) relative to those of non-enhanced time-of-flight (TOF) MRA for non-coronary arterial disease. Both techniques were compared with X-ray angiography as the gold standard. METHODS Patients were of both sexes, were aged at least 18 years and had suspected non-coronary arterial disease. Each patient was his/her own control and underwent TOF MRA followed by Gd-DOTA-enhanced MRA, and then X-ray angiography. MRA was performed at 1.5 T (USA study) or 3 T (Republic of Korea study). The primary criterion used to evaluate efficacy was the degree to which the MRA examination agreed with X-ray angiography in assessing non-coronary arterial lesions. The performance of Gd-DOTA over TOF was assessed using a one-sided paired t-test. We also evaluated the specificity, sensitivity, image quality, examination duration and clinical safety of both MRA procedures. RESULTS In total, 192 patients were enrolled and received Gd-DOTA. In the intent-to-treat population (n=162), within-patient accuracy was significantly greater for Gd-DOTA than for TOF (85.8 ± 19.8% agreement between Gd-DOTA and X-ray angiography compared with 78.3 ± 24.9% agreement between TOF and X-ray angiography; p=0.0001). The sensitivity, specificity, image quality and examination duration were also better for Gd-DOTA than for TOF. There were no serious drug-related adverse events. CONCLUSION We conclude that Gd-DOTA-enhanced MRA is a safe and accurate procedure for detecting arterial stenosis at both 1.5 T and 3 T.
Collapse
Affiliation(s)
- D J Shah
- Cardiac Magnetic Resonance Imaging, Weill Cornell Medical College, The Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | | |
Collapse
|
7
|
Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3 T using interleaved echo planar imaging. Invest Radiol 2011; 45:458-64. [PMID: 20479653 DOI: 10.1097/rli.0b013e3181d8df32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The goal of this work was to reduce the scan time of contrast-enhanced whole-heart coronary magnetic resonance angiography (MRA) by using a gradient echo interleaved echo planar imaging (GRE-EPI) sequence at 3 T field strength. MATERIALS AND METHODS A GRE-EPI sequence was optimized to acquire contrast-enhanced whole-heart coronary MRA at 3 T. First-order phase correction was used for alignment of the odd and even echoes in the GRE-EPI echo train. Single and dual reference scan techniques for estimation of the linear phase correction parameters were evaluated using both phantom and volunteer studies. The GRE-EPI readout was combined with parallel imaging for a further reduction in scan time. To avoid image distortions, calibration signals for coil sensitivity estimation were acquired in a separate low resolution GRE scan before the whole-heart GRE-EPI scan. Eight healthy volunteers were scanned with the optimized contrast-enhanced GRE-EPI sequence. GRE-EPI images were acquired during slow infusion (0.3 mL/s) of 0.1 mmol/kg body weight of Gd-BOPTA. For comparison purposes, the same 8 volunteers were scanned again in a separate scan session using a traditional GRE sequence with double the dose (0.2 mmol/kg body weight) of the same contrast agent with the same injection rate. The contrast-enhanced GRE-EPI and contrast-enhanced GRE techniques were compared in terms of relative signal-to-noise ratio (rSNR), relative contrast-to-noise ratio (rCNR), image quality scores, and visualized vessel lengths. RESULTS Both, phantom and volunteer studies demonstrated that the dual reference scan phase correction technique was a key step for obtaining satisfactory image quality using GRE-EPI at 3 T. Whole-heart coronary MRA with a spatial resolution of 1.0 x 1.0 x 2.0 mm3 was acquired with the GRE-EPI sequence in an average scan time of 2.5 +/- 0.6 minutes, compared with 8.6 +/- 2.7 minutes for the GRE technique. The GRE-EPI technique had lower rCNR compared with the GRE sequence. The image quality and coronary artery visualization with the GRE-EPI technique were adequate, and there was no statistically significant difference in the image quality scores, rSNR, and visualized coronary artery lengths between the GRE-EPI and GRE techniques. CONCLUSIONS Contrast-enhanced whole-heart coronary MRA using the GRE-EPI technique resulted in excellent delineation of all the major coronary arteries and compared with current GRE techniques demonstrated a factor of 2 reduction in contrast agent dose and a factor of 3 reduction in scan time.
Collapse
|
8
|
Bhat H, Yang Q, Zuehlsdorff S, Li K, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3 T with radial EPI. Magn Reson Med 2011; 66:82-91. [PMID: 21305601 DOI: 10.1002/mrm.22781] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 02/05/2023]
Abstract
Whole-heart coronary magnetic resonance angiography is a promising method for detecting coronary artery disease. However, the imaging time is relatively long (typically 10-15 min). The goal of this study was to implement a radial echo planar imaging sequence for contrast-enhanced whole-heart coronary magnetic resonance angiography, with the aim of combining the scan efficiency of echo planar imaging with the motion insensitivity of radial k-space sampling. A self-calibrating phase correction technique was used to correct for off-resonance effects, trajectory measurement was used to correct for k-space trajectory errors, and variable density sampling was used in the partition direction to reduce streaking artifacts. Seven healthy volunteers and two patients were scanned with the proposed radial echo planar imaging sequence, and the images were compared with a traditional gradient echo and X-ray angiography techniques, respectively. Whole-heart images with the radial EPI technique were acquired with a resolution of 1.0 × 1.0 × 2.0 mm(3) in a scan time of 5 min. In healthy volunteers, the average image quality scores and visualized vessel lengths of the RCA and LAD were similar for the radial EPI and gradient echo techniques (P value > 0.05 for all). Anecdotal patient studies showed excellent agreement of the radial EPI technique with X-ray angiography.
Collapse
Affiliation(s)
- Himanshu Bhat
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
9
|
Modeling and Registration for Electrophysiology Procedures Based on Three-Dimensional Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2011. [DOI: 10.1007/s12410-011-9067-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Fitzgerald TN, Muto A, Fancher TT, Brown PB, Martin KA, Muhs BE, Rothman DL, Constable RT, Sampath S, Dardik A. Surgically implantable magnetic resonance angiography coils improve resolution to allow visualization of blood flow dynamics. Ann Vasc Surg 2009; 24:242-53. [PMID: 20036497 DOI: 10.1016/j.avsg.2009.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/28/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Magnetic resonance angiography (MRA) is clinically useful but of limited applicability to small animal models due to poor signal resolution, with typical voxel sizes of 1 mm(3) that are insufficient to analyze vessels of diameter <1 mm. We determined whether surgically implantable, extravascular MRA coils increase signal resolution adequately to examine blood flow dynamics METHODS A custom MRA coil was surgically implanted near the carotid artery of a New Zealand White rabbit. A stenosis was created in the carotid artery to induce complicated, non-laminar flow. Phase contrast images were obtained on multiple axial planes with 3T MRA and through-plane velocity profiles were calculated under laminar and complicated flow conditions. These velocity profiles were fit to a laminar flow model using ordinary least squares in order to quantify the degree of flow complication (Matlab). Flow was also measured with a Doppler flow probe; vessel diameters and flow velocities were compared with duplex ultrasound RESULTS Carotid artery blood flow was 24.7 +/- 2.6 ml/min prior to stenosis creation and reduced to 12.0 +/- 1.7 ml/min following injury (n=3). An MRA voxel size of 0.1 x 0.1 x 5 mm was achieved. The control carotid artery diameter was 1.9 +/- 0.1 mm, and cross-sectional images containing 318 +/- 22 voxels were acquired (n=26). Velocity profiles resembled laminar flow proximal to the stenosis, and then became more complicated just proximal and distal to the stenosis. Laminar flow conditions returned downstream of the stenosis CONCLUSION Implantable, extra-vascular coils enable small MRA voxel sizes to reproducibly calculate complex velocity profiles under both laminar and complicated flow in a small animal model. This technique may be applied to study blood flow dynamics of vessel remodeling and atherogenesis.
Collapse
Affiliation(s)
- Tamara N Fitzgerald
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bhat H, Zuehlsdorff S, Bi X, Li D. Whole-heart contrast-enhanced coronary magnetic resonance angiography using gradient echo interleaved EPI. Magn Reson Med 2009; 61:1388-95. [PMID: 19319898 DOI: 10.1002/mrm.21963] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Whole-heart coronary MR angiography (MRA) is a promising method for detecting coronary artery disease. However, the imaging time is relatively long (on the order of 10-15 min). Such a long imaging time may result in patient discomfort and compromise the robustness of whole-heart coronary MRA due to increased respiratory and cardiac motion artifacts. The goal of this study was to optimize a gradient echo interleaved echo planar imaging (GRE-EPI) acquisition scheme for reducing the imaging time of contrast-enhanced whole-heart coronary MRA. Numerical simulations and phantom studies were used to optimize the GRE-EPI sequence parameters. Healthy volunteers were scanned with both the proposed GRE-EPI sequence and a 3D TrueFISP sequence for comparison purposes. Slow infusion (0.5 cc/sec) of Gd-DTPA was used to enhance the signal-to-noise ratio (SNR) of the GRE-EPI acquisition. Whole-heart images with the GRE-EPI technique were acquired with a true resolution of 1.0 x 1.1 x 2.0 mm(3) in an average scan time of 4.7 +/- 0.7 min with an average navigator efficiency of 44 +/- 6%. The GRE-EPI acquisition showed excellent delineation of all the major coronary arteries with scan time reduced by a factor of 2 compared with the TrueFISP acquisition.
Collapse
Affiliation(s)
- Himanshu Bhat
- Departments of Radiology and Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Petretta M, Costanzo P, Acampa W, Imbriaco M, Ferro A, Filardi PP, Cuocolo A. Noninvasive assessment of coronary anatomy and myocardial perfusion: going toward an integrated imaging approach. J Cardiovasc Med (Hagerstown) 2008; 9:977-86. [PMID: 18799959 DOI: 10.2459/jcm.0b013e328306f311] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many noninvasive imaging techniques are available for the evaluation of patients with known or suspected chronic coronary artery disease. Among these, computed tomography-based techniques allow the quantification of coronary atherosclerotic calcium and noninvasive imaging of coronary arteries, whereas nuclear cardiology is the most widely used noninvasive approach for the assessment of myocardial perfusion. The available single-photon emission computed tomography flow agents are characterized by a cardiac uptake proportional to myocardial blood flow. In addition, different positron emission tomography tracers may be used for the quantitative measurement of myocardial blood flow and coronary flow reserve. Extensive research is currently being performed in the development of noninvasive coronary angiography and myocardial perfusion imaging using cardiac magnetic resonance. Finally, new multimodality imaging systems have been recently developed, bringing together anatomical and functional information. This review sought to provide a description of the relative merits of noninvasive imaging techniques in the assessment of coronary anatomy and myocardial perfusion in patients with known or suspected coronary artery disease.
Collapse
Affiliation(s)
- Mario Petretta
- Department of Clinical Medicine, Cardiovascular and Immunological Sciences, University Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Boffano C, Chiribiri A, Cesarani F. Native whole-heart coronary imaging for the identification of anomalous origin of the coronary arteries. Int J Cardiol 2008; 137:e27-8. [PMID: 18687486 DOI: 10.1016/j.ijcard.2008.05.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/10/2008] [Indexed: 02/07/2023]
Abstract
Congenital abnormalities of the coronary arteries are an uncommon cause of chest pain and in some cases may cause sudden cardiac death. We examined with magnetic resonance (MR) a 52 year-old woman presenting with effort angina, and positive treadmill stress test. Whole-heart coronary imaging performed without paramagnetic contrast agents revealed an anomalous origin of a single coronary artery from the right sinus of Valsalva. This is one of the first reports describing whole-heart coronary MR finding of an anomalous origin of the coronary arteries, obtained without contrast agents.
Collapse
|
15
|
Evaluation of a coronary-cameral fistula: benefits of coronary dual-source MDCT angiography in children. Pediatr Radiol 2008; 38:874-8. [PMID: 18523763 DOI: 10.1007/s00247-008-0906-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/21/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
We describe the use of a dual-source 64-channel multidetector array CT (MDCT) scanner in the evaluation of a coronary-cameral fistula in a 10-month-old boy. Echocardiography, cardiac catheterization, and MRI are modalities often used to evaluate congenital and other pediatric heart diseases. Radiation dose concerns and the absence of established protocols are factors that have potentially limited the use of CT for work-up in these young children. We present a case in which recent advances in technology allowed effective low-dose diagnostic quality coronary MDCT angiography in an infant.
Collapse
|