1
|
Beissel LD, Kording F, Ruprecht C, Isaak A, Vollbrecht TM, Pieper CC, Kuetting D, Ali A, Wölfl P, Hart C, Luetkens JA. Doppler ultrasound gating for adult cardiovascular magnetic resonance: Initial experience. J Cardiovasc Magn Reson 2025; 27:101862. [PMID: 39955069 PMCID: PMC12019829 DOI: 10.1016/j.jocmr.2025.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Despite being a common gating method for cardiovascular magnetic resonance (CMR), electrocardiogram (ECG) gating has its disadvantages, and new gating strategies are desirable. An alternative CMR gating method is Doppler ultrasound (DUS) gating, which detects blood flow and ventricular movement. The aim of this study was to prove the feasibility of DUS gating as a novel CMR gating method in a clinical patient population. METHODS In this prospective study, patients underwent clinically indicated CMR. Balanced steady-state free precession two-dimensional cine sequences in short-axis and 4-chamber views were acquired using ECG and DUS gating. DUS and ECG signal were recorded simultaneously. Time difference between R-wave and DUS systolic trigger detection was defined as trigger delay, the standard deviation of trigger delays as trigger jitter. Left and right ventricular parameters were assessed: left and right ventricular ejection fraction (LVEF, RVEF) and left and right ventricular end-diastolic volume index (LVEDVI, RVEDVI). Overall image quality was assessed using a 5-point Likert scale (5 = excellent to 1 = non-diagnostic). For statistical analysis, paired t-test, Wilcoxon test, Pearson correlation, and intraclass correlation coefficient (ICC) were employed. RESULTS Twenty-one patients (7 female) were included (age: 45.4 ± 19.7 years; body mass index: 27.6 ± 5.5 kg/m2). DUS mean trigger delay was 128 ± 28 ms. DUS mean trigger jitter was 23 ± 13 ms. Overall image quality showed no difference between ECG and DUS gating (e.g., short axis: 5 [interquartile range (IQR) 3-5] vs 4 [IQR 3.5-5]; P = 0.21). Quantitative analysis revealed no differences between ECG and DUS gating: LVEF (53.2 ± 9.2% vs 52.3 ± 9.1%; P = 0.18; ICC 0.97 [95% confidence interval [CI] 0.93-0.99]), LVEDVI (84.5 ± 15.8 mL/m2 vs 83.3 ± 15.8 mL/m2; P = 0.06; ICC 0.99 [95% CI 0.98-1.00]), RVEF (52.8 ± 8.0% vs 51.6 ± 7.2%; P = 0.06; ICC 0.96 [95% CI 0.89-0.99]), and RVEDVI (80.8 ± 17.6 mL/m2 vs 80.9 ± 16.5 mL/m2; P = 0.91; ICC 0.98 [95% CI 0.96-0.99]). In one patient with a prominent lingula of the lung image quality was non-diagnostic with DUS gating. CONCLUSION CMR gating with DUS is feasible and can offer an equivalent performance to ECG regarding image quality and quantitative parameter assessment.
Collapse
Affiliation(s)
- Lucia D Beissel
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Laboratory Bonn (QILaB), University Hospital Bonn, Bonn, Germany
| | | | | | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Laboratory Bonn (QILaB), University Hospital Bonn, Bonn, Germany
| | - Thomas M Vollbrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Laboratory Bonn (QILaB), University Hospital Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Laboratory Bonn (QILaB), University Hospital Bonn, Bonn, Germany
| | | | - Pia Wölfl
- Northh Medical GmbH, Hamburg, Germany
| | - Christopher Hart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Laboratory Bonn (QILaB), University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Vollbrecht TM, Bissell MM, Kording F, Geipel A, Isaak A, Strizek BS, Hart C, Barker AJ, Luetkens JA. Fetal Cardiac MRI Using Doppler US Gating: Emerging Technology and Clinical Implications. Radiol Cardiothorac Imaging 2024; 6:e230182. [PMID: 38602469 PMCID: PMC11056758 DOI: 10.1148/ryct.230182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Fetal cardiac MRI using Doppler US gating is an emerging technique to support prenatal diagnosis of congenital heart disease and other cardiovascular abnormalities. Analogous to postnatal electrocardiographically gated cardiac MRI, this technique enables directly gated MRI of the fetal heart throughout the cardiac cycle, allowing for immediate data reconstruction and review of image quality. This review outlines the technical principles and challenges of cardiac MRI with Doppler US gating, such as loss of gating signal due to fetal movement. A practical workflow of patient preparation for the use of Doppler US-gated fetal cardiac MRI in clinical routine is provided. Currently applied MRI sequences (ie, cine or four-dimensional flow imaging), with special consideration of technical adaptations to the fetal heart, are summarized. The authors provide a literature review on the clinical benefits of Doppler US-gated fetal cardiac MRI for gaining additional diagnostic information on cardiovascular malformations and fetal hemodynamics. Finally, future perspectives of Doppler US-gated fetal cardiac MRI and further technical developments to reduce acquisition times and eliminate sources of artifacts are discussed. Keywords: MR Fetal, Ultrasound Doppler, Cardiac, Heart, Congenital, Obstetrics, Fetus Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Thomas M. Vollbrecht
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Malenka M. Bissell
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Fabian Kording
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Annegret Geipel
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alexander Isaak
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Brigitte S. Strizek
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Christopher Hart
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alex J. Barker
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Julian A. Luetkens
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| |
Collapse
|
3
|
Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. ROFO-FORTSCHR RONTG 2022; 194:841-851. [PMID: 35905903 DOI: 10.1055/a-1761-3500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) has become a valuable adjunct to ultrasound in the prenatal diagnosis of congenital pathologies of the central nervous system, thorax, and abdomen. Fetal cardiovascular magnetic resonance (CMR) was limited, mainly by the lack of cardiac gating, and has only recently evolved due to technical developments. METHOD A literature search was performed on PubMed, focusing on technical advancements to perform fetal CMR. In total, 20 publications on cardiac gating techniques in the human fetus were analyzed. RESULTS Fetal MRI is a safe imaging method with no developmental impairments found to be associated with in utero exposure to MRI. Fetal CMR is challenging due to general drawbacks (e. g., fetal motion) and specific limitations such as the difficulty to generate a cardiac gating signal to achieve high spatiotemporal resolution. Promising technical advancements include new methods for fetal cardiac gating, based on novel post-processing approaches and an external hardware device, as well as motion compensation and acceleration techniques. CONCLUSION Newly developed direct and indirect gating approaches were successfully applied to achieve high-quality morphologic and functional imaging as well as quantitative assessment of fetal hemodynamics in research settings. In cases when prenatal echocardiography is limited, e. g., by an unfavorable fetal position in utero, or when its results are inconclusive, fetal CMR could potentially serve as a valuable adjunct in the prenatal assessment of congenital cardiovascular malformations. However, sufficient data on the diagnostic performance and clinical benefit of new fetal CMR techniques is still lacking. KEY POINTS · New fetal cardiac gating methods allow high-quality fetal CMR.. · Motion compensation and acceleration techniques allow for improvement of image quality.. · Fetal CMR could potentially serve as an adjunct to fetal echocardiography in the future.. CITATION FORMAT · Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841 - 851.
Collapse
Affiliation(s)
- Janine Knapp
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Björn P Schönnagel
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
In Vivo Magnetic Resonance Spectroscopy Methods for Investigating Cardiac Metabolism. Metabolites 2022; 12:metabo12020189. [PMID: 35208262 PMCID: PMC8877606 DOI: 10.3390/metabo12020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive and non-ionizing technique, enabling in vivo investigation of cardiac metabolism in normal and diseased hearts. In vivo measurement tools are critical for studying mechanisms that regulate cardiac energy metabolism in disease developments and to assist in early response assessments to novel therapies. For cardiac MRS, proton (1H), phosphorus (31P), and hyperpolarized 13-carbon (13C) provide valuable metabolic information for diagnosis and treatment assessment purposes. Currently, low sensitivity and some technical limitations limit the utility of MRS. An essential step in translating MRS for clinical use involves further technological improvements, particularly in coil design, improving the signal-to-noise ratios, field homogeneity, and optimizing radiofrequency sequences. This review addresses the recent advances in metabolic imaging by MRS from primarily the literature published since 2015.
Collapse
|
5
|
Qi Y, Li L, Feng G, Shao C, Cai Y, Wang Z. Research Progress of Imaging Methods for Detection of Microvascular Angina Pectoris in Diabetic Patients. Front Cardiovasc Med 2021; 8:713971. [PMID: 34621798 PMCID: PMC8490615 DOI: 10.3389/fcvm.2021.713971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetes is a complex metabolic disease characterized by hyperglycemia. Its complications are various, often involving the heart, brain, kidney, and other essential organs. At present, the number of diabetic patients in the world is growing day by day. The cardiovascular disease caused by diabetes has dramatically affected the quality of life of diabetic patients. It is the leading cause of death of diabetic patients. Diabetic patients often suffer from microvascular angina pectoris without obstructive coronary artery disease. Still, there are typical ECG ischemia and angina pectoris, that is, chest pain and dyspnea under exercise. Unlike obstructive coronary diseases, nitrate does not affect chest pain caused by coronary microvascular angina in most cases. With the increasing emphasis on diabetic microvascular angina, the need for accurate diagnosis of the disease is also increasing. We can use SPECT, PET, CMR, MCE, and other methods to evaluate coronary microvascular function. SPECT is commonly used in clinical practice, and PET is considered the gold standard for non-invasive detection of myocardial blood flow. This article mainly introduces the research progress of these imaging methods in detecting microvascular angina in diabetic patients.
Collapse
Affiliation(s)
- Yiming Qi
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Hupp M, Pfender N, Vallotton K, Rosner J, Friedl S, Zipser CM, Sutter R, Klarhöfer M, Spirig JM, Betz M, Schubert M, Freund P, Farshad M, Curt A. The Restless Spinal Cord in Degenerative Cervical Myelopathy. AJNR Am J Neuroradiol 2021; 42:597-609. [PMID: 33541903 DOI: 10.3174/ajnr.a6958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The spinal cord is subject to a periodic, cardiac-related movement, which is increased at the level of a cervical stenosis. Increased oscillations may exert mechanical stress on spinal cord tissue causing intramedullary damage. Motion analysis thus holds promise as a biomarker related to disease progression in degenerative cervical myelopathy. Our aim was characterization of the cervical spinal cord motion in patients with degenerative cervical myelopathy. MATERIALS AND METHODS Phase-contrast MR imaging data were analyzed in 55 patients (37 men; mean age, 56.2 [SD,12.0] years; 36 multisegmental stenoses) and 18 controls (9 men, P = .368; mean age, 62.2 [SD, 6.5] years; P = .024). Parameters of interest included the displacement and motion pattern. Motion data were pooled on the segmental level for comparison between groups. RESULTS In patients, mean craniocaudal oscillations were increased manifold at any level of a cervical stenosis (eg, C5 displacement: controls [n = 18], 0.54 [SD, 0.16] mm; patients [n = 29], monosegmental stenosis [n = 10], 1.86 [SD, 0.92] mm; P < .001) and even in segments remote from the level of the stenosis (eg, C2 displacement: controls [n = 18], 0.36 [SD, 0.09] mm; patients [n = 52]; stenosis: C3, n = 21; C4, n = 11; C5, n = 18; C6, n = 2; 0.85 [SD, 0.46] mm; P < .001). Motion at C2 differed with the distance to the next stenotic segment and the number of stenotic segments. The motion pattern in most patients showed continuous spinal cord motion throughout the cardiac cycle. CONCLUSIONS Patients with degenerative cervical myelopathy show altered spinal cord motion with increased and ongoing oscillations at and also beyond the focal level of stenosis. Phase-contrast MR imaging has promise as a biomarker to reveal mechanical stress to the cord and may be applicable to predict disease progression and the impact of surgical interventions.
Collapse
Affiliation(s)
- M Hupp
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - N Pfender
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - K Vallotton
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - J Rosner
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - S Friedl
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - C M Zipser
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | | | - M Klarhöfer
- Siemens Healthcare AG (M.K.), Zurich, Switzerland
| | - J M Spirig
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Betz
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Schubert
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - P Freund
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - M Farshad
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - A Curt
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Ladrova M, Martinek R, Nedoma J, Hanzlikova P, Nelson MD, Kahankova R, Brablik J, Kolarik J. Monitoring and Synchronization of Cardiac and Respiratory Traces in Magnetic Resonance Imaging: A Review. IEEE Rev Biomed Eng 2021; 15:200-221. [PMID: 33513108 DOI: 10.1109/rbme.2021.3055550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synchronization of human vital signs, namely the cardiac cycle and respiratory excursions, is necessary during magnetic resonance imaging of the cardiovascular system and the abdominal cavity to achieve optimal image quality with minimized artifacts. This review summarizes techniques currently available in clinical practice, as well as methods under development, outlines the benefits and disadvantages of each approach, and offers some unique solutions for consideration.
Collapse
|
8
|
Markenroth Bloch K, Kording F, Töger J. Doppler ultrasound cardiac gating of intracranial flow at 7T. BMC Med Imaging 2020; 20:128. [PMID: 33297985 PMCID: PMC7724705 DOI: 10.1186/s12880-020-00523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ultra-high field magnetic resonance imaging (MR) may be used to improve intracranial blood flow measurements. However, standard cardiac synchronization methods tend to fail at ultra-high field MR. Therefore, this study aims to investigate an alternative synchronization technique using Doppler ultrasound. METHODS Healthy subjects (n = 9) were examined with 7T MR. Flow was measured in the M1-branch of the middle cerebral artery (MCA) and in the cerebral aqueduct (CA) using through-plane phase contrast (2D flow). Flow in the circle of Willis was measured with three-dimensional, three-directional phase contrast (4D flow). Scans were gated with Doppler ultrasound (DUS) and electrocardiogram (ECG), and pulse oximetry data (POX) was collected simultaneously. False negative and false positive trigger events were counted for ECG, DUS and POX, and quantitative flow measures were compared. RESULTS There were fewer false positive triggers for DUS compared to ECG (5.3 ± 11 vs. 25 ± 31, p = 0.031), while no other measured parameters differed significantly. Net blood flow in M1 was similar between DUS and ECG for 2D flow (1.5 ± 0.39 vs. 1.6 ± 0.41, bias ± 1.96SD: - 0.021 ± 0.36) and 4D flow (1.8 ± 0.48 vs. 9 ± 0.59, bias ± 1.96SD: - 0.086 ± 0.57 ml). Net CSF flow per heart beat in the CA was also similar for DUS and ECG (3.6 ± 2.1 vs. 3.0 ± 5.8, bias ± 1.96SD: 0.61 ± 13.6 μl). CONCLUSION Gating with DUS produced fewer false trigger events than using ECG, with similar quantitative flow values. DUS gating is a promising technique for cardiac synchronization at 7T.
Collapse
Affiliation(s)
- Karin Markenroth Bloch
- The Swedish National 7T Facility, Lund University Bioimaging Center, Lund University, Klinikgatan 32, BMC D11, 22242, Lund, Sweden.
| | - Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.,Northh Medical GmbH, Röntgenstraße 24, 22335, Hamburg, Germany
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University and Skane University Hospital Lund, Lund, Sweden
| |
Collapse
|
9
|
Ryd D, Sun L, Steding-Ehrenborg K, Bidhult S, Kording F, Ruprecht C, Macgowan CK, Seed M, Aletras AH, Arheden H, Hedström E. Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating. J Cardiovasc Magn Reson 2019; 21:74. [PMID: 31783877 PMCID: PMC6883707 DOI: 10.1186/s12968-019-0586-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Fetal cardiovascular magnetic resonance (CMR) imaging is used clinically and for research, but has been previously limited due to lack of direct gating methods. A CMR-compatible Doppler ultrasound (DUS) gating device has resolved this. However, the DUS-gating method is not validated against the current reference method for fetal phase-contrast blood flow measurements, metric optimized gating (MOG). Further, we investigated how different methods for vessel delineation affect flow volumes and observer variability in fetal flow acquisitions. AIMS To 1) validate DUS gating versus MOG for quantifying fetal blood flow; 2) assess repeatability of DUS gating; 3) assess impact of region of interest (ROI) size on flow volume; and 4) compare time-resolved and static delineations for flow volume and observer variability. METHODS Phase-contrast CMR was acquired in the fetal descending aorta (DAo) and umbilical vein by DUS gating and MOG in 22 women with singleton pregnancy in gestational week 360 (265-400) with repeated scans in six fetuses. Impact of ROI size on measured flow was assessed for ROI:s 50-150% of the vessel diameter. Four observers from two centers provided time-resolved and static delineations. Bland-Altman analysis was used to determine agreement between both observers and methods. RESULTS DAo flow was 726 (348-1130) ml/min and umbilical vein flow 366 (150-782) ml/min by DUS gating. Bias±SD for DUS-gating versus MOG were - 45 ± 122 ml/min (-6 ± 15%) for DAo and 19 ± 136 ml/min (2 ± 24%) for umbilical vein flow. Repeated flow measurements in the same fetus showed similar volumes (median CoV = 11% (DAo) and 23% (umbilical vein)). Region of interest 50-150% of vessel diameter yielded flow 35-120%. Bias±SD for time-resolved versus static DUS-gated flow was 33 ± 39 ml/min (4 ± 6%) for DAo and 11 ± 84 ml/min (2 ± 15%) for umbilical vein flow. CONCLUSIONS Quantification of blood flow in the fetal DAo and umbilical vein using DUS-gated phase-contrast CMR is feasible and agrees with the current reference method. Repeatability was generally high for CMR fetal blood flow assessment. An ROI similar to the vessel area or slightly larger is recommended. A static ROI is sufficient for fetal flow quantification using currently available CMR sequences.
Collapse
Affiliation(s)
- Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Liqun Sun
- Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON Canada
| | - Katarina Steding-Ehrenborg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
- Department of Health Sciences, Physiotherapy, Lund University, Lund, Sweden
| | - Sebastian Bidhult
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Fabian Kording
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher K. Macgowan
- Department of Medical Biophysics, University of Toronto and Hospital for Sick Children, Toronto, ON Canada
| | - Michael Seed
- Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON Canada
- Department of Diagnostic Imaging, University of Toronto and Hospital for Sick Children, Toronto, ON Canada
| | - Anthony H. Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
- School of Medicine, Laboratory of Computing, Medical Informatics and Biomedical, Imaging Technologies, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
10
|
Goebel J, Nensa F, Schemuth HP, Maderwald S, Schlosser T, Orzada S, Rietsch S, Quick HH, Nassenstein K. Feasibility of aortic valve planimetry at 7 T ultrahigh field MRI: Comparison to aortic valve MRI at 3 T and 1.5 T. Eur J Radiol Open 2018; 5:159-164. [PMID: 30225274 PMCID: PMC6138940 DOI: 10.1016/j.ejro.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
Abstract
Introduction This study examined the feasibility of aortic valve planimetry at 7 T ultrahigh field MRI in intraindividual comparison to 3 T and 1.5 T MRI. Material and methods Aortic valves of eleven healthy volunteers (mean age, 26.4 years) were examined on a 7 T, 3 T, and 1.5 T MR system using FLASH and TrueFISP sequences. Two experienced radiologists evaluated overall image quality, the presence of artefacts, tissue contrast ratios, identifiability, and image details of the aortic valve opening area (AVOA). Furthermore, AVOA was quantified twice by reader 1 and once by reader 2. Correlation analysis between artefact severity and employed magnetic field strength was performed by modified Fisher’s exact-test. Paired t-test was used to analyse for AVOA differences, and Bland-Altman plots were used to analyse AVOA intra-rater and inter-rater variability. Results Aortic valve imaging at 7 T, 3 T, and 1.5 T with using FLASH was less hampered by artefacts than TrueFISP imaging at 3 T and 1.5 T. Tissue contrast and image details were rated best at 7 T. AVOA was measured slightly smaller at 7 T compared to 3 T (TrueFISP, p-value = 0.057; FLASH, p-value = 0.016) and 1.5 T (TrueFISP, p-value = 0.029; FLASH, p-value = 0.018). Intra-rater and inter-rater variability of AVOA tended to be slightly smaller at 7 T than at 3 T and 1.5 T. Conclusion Aortic valve planimetry at 7 T ultrahigh field MRI is technically feasible and in healthy volunteers offers an improved tissue contrast and a slightly better reproducibility than MR planimetry at 1.5 T and 3 T.
Collapse
Affiliation(s)
- Juliane Goebel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Haemi P Schemuth
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Thomas Schlosser
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Stefan Rietsch
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Kai Nassenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
11
|
Krishnamurthy U, Yadav BK, Jella PK, Haacke EM, Hernandez-Andrade E, Mody S, Yeo L, Hassan SS, Romero R, Neelavalli J. Quantitative Flow Imaging in Human Umbilical Vessels In Utero Using Nongated 2D Phase Contrast MRI. J Magn Reson Imaging 2018; 48:283-289. [PMID: 29274251 PMCID: PMC6015537 DOI: 10.1002/jmri.25917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Volumetric assessment of afferent blood flow rate provides a measure of global organ perfusion. Phase-contrast magnetic resonance imaging (PCMRI) is a reliable tool for volumetric flow quantification, but given the challenges with motion and lack of physiologic gating signal, such studies, in vivo on the human placenta, are scant. PURPOSE To evaluate and apply a nongated (ng) PCMRI technique for quantifying blood flow rates in utero in umbilical vessels. STUDY TYPE Prospective study design. STUDY POPULATION Twenty-four pregnant women with median gestational age (GA) 30 4/7 weeks and interquartile range (IQR) 8 1/7 weeks. FIELD STRENGTH/SEQUENCE All scans were performed on a 3.0T Siemens Verio system using the ng-PCMRI technique. ASSESSMENT The GA-dependent increase in umbilical vein (UV) and arterial (UA) flow was compared to previously published values. Systematic error to be expected from ng-PCMRI, in the context of pulsatile UA flow and partial voluming, was studied through Monte-Carlo simulations, as a function of resolution and number of averages. STATISTICAL TESTS Correlation between the UA and UV was evaluated using a generalized linear model. RESULTS Simulations showed that ng-PCMRI measurement variance reduced by increasing the number of averages. For vessels on the order of 2 voxels in radius, partial voluming led to 10% underestimation in the flow. In fetuses, the average flow rates in UAs and UV were measured to be 203 ± 80 ml/min and 232 ± 92 ml/min and the normalized average flow rates were 140 ± 59 ml/min/kg and 155 ± 57 ml/min/kg, respectively. Excellent correlation was found between the total arterial flow vs. corresponding venous flow, with a slope of 1.08 (P = 0.036). DATA CONCLUSION Ng-PCMRI can provide accurate volumetric flow measurements in utero in the human umbilical vessels. Care needs to be taken to ensure sufficiently high-resolution data are acquired to minimize partial voluming-related errors. LEVEL OF EVIDENCE 2 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Brijesh K Yadav
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Pavan K Jella
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ewart Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Swati Mody
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Jaladhar Neelavalli
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
12
|
Kording F, Yamamura J, de Sousa MT, Ruprecht C, Hedström E, Aletras AH, Ellen Grant P, Powell AJ, Fehrs K, Adam G, Kooijman H, Schoennagel BP. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson 2018; 20:17. [PMID: 29530064 PMCID: PMC5846256 DOI: 10.1186/s12968-018-0440-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fetal cardiovascular magnetic resonance (CMR) imaging may provide a valuable adjunct to fetal echocardiography in the evaluation of congenital cardiovascular pathologies. However, dynamic fetal CMR is difficult due to the lack of direct in-utero cardiac gating. The aim of this study was to investigate the effectiveness of a newly developed Doppler ultrasound (DUS) device in humans for fetal CMR gating. METHODS Fifteen fetuses (gestational age 30-39 weeks) were examined using 1.5 T CMR scanners at three different imaging sites. A newly developed CMR-compatible DUS device was used to generate gating signals from fetal cardiac motion. Gated dynamic balanced steady-state free precession images were acquired in 4-chamber and short-axis cardiac views. Gating signals during data acquisition were analyzed with respect to trigger variability and sensitivity. Image quality was assessed by measuring endocardial blurring (EB) and by image evaluation using a 4-point scale. Left ventricular (LV) volumetry was performed using the single-plane ellipsoid model. RESULTS Gating signals from the fetal heart were detected with a variability of 26 ± 22 ms and a sensitivity of trigger detection of 96 ± 4%. EB was 2.9 ± 0.6 pixels (4-chamber) and 2.5 ± 0.1 pixels (short axis). Image quality scores were 3.6 ± 0.6 (overall), 3.4 ± 0.7 (mitral valve), 3.4 ± 0.7 (foramen ovale), 3.6 ± 0.7 (atrial septum), 3.7 ± 0.5 (papillary muscles), 3.8 ± 0.4 (differentiation myocardium/lumen), 3.7 ± 0.5 (differentiation myocardium/lung), and 3.9 ± 0.4 (systolic myocardial thickening). Inter-observer agreement for the scores was moderate to very good (kappa 0.57-0.84) for all structures. LV volumetry revealed mean values of 2.8 ± 1.2 ml (end-diastolic volume), 0.9 ± 0.4 ml (end systolic volume), 1.9 ± 0.8 ml (stroke volume), and 69.1 ± 8.4% (ejection fraction). CONCLUSION High-quality dynamic fetal CMR was successfully performed using a newly developed DUS device for direct fetal cardiac gating. This technique has the potential to improve the utility of fetal CMR in the evaluation of congenital pathologies.
Collapse
Affiliation(s)
- Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuela Tavares de Sousa
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Erik Hedström
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Anthony H. Aletras
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - P. Ellen Grant
- Departments of Radiology and Medicine, Boston Children’s Hospital, and Harvard Medical School, Boston, MA USA
| | - Andrew J. Powell
- Department of Cardiology and Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kai Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | - Bjoern P. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Kording F, Schoennagel BP, de Sousa MT, Fehrs K, Adam G, Yamamura J, Ruprecht C. Evaluation of a Portable Doppler Ultrasound Gating Device for Fetal Cardiac MR Imaging: Initial Results at 1.5T and 3T. Magn Reson Med Sci 2018; 17:308-317. [PMID: 29467359 PMCID: PMC6196307 DOI: 10.2463/mrms.mp.2017-0100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose: Fetal cardiac MRI has the potential to play an important role in the assessment of fetal cardiac pathologies, but it is up to now not feasible due to a missing gating method. The purpose of this work was the evaluation of Doppler ultrasound (DUS) for external fetal cardiac gating with regard to compatibility, functionality, and reliability. Preliminary results were assessed performing fetal cardiac MRI. Methods: An MRI conditional DUS device was developed to obtain a gating signal from the fetal heart. The MRI compatibility was evaluated at 1.5T and 3T using B1 field maps and gradient echo images. The quality and sensitivity of the DUS device to detect the fetal heart motion for cardiac gating were evaluated outside the MRI room in 15 fetuses. A dynamic fetal cardiac phantom was employed to evaluate distortions of the DUS device and gating signal due to electromagnetic interferences at 1.5T and 3T. In the first in vivo experience, dynamic fetal cardiac images were acquired in four-chamber view at 1.5T and 3T in two fetuses. Results: The maximum change in the B1 field and signal intensity with and without the DUS device was <6.5% for 1.5T and 3T. The sensitivity of the DUS device to detect the fetal heartbeat was 99.1%. Validation of the DUS device using the fetal cardiac phantom revealed no electromagnetic interferences at 1.5T or 3T and a high correlation to the simulated heart frequencies. Fetal cardiac cine images were successfully applied and showed good image quality. Conclusion: An MR conditional DUS gating device was developed and evaluated revealing safety, compatibility, and reliability for different field strengths. In a preliminary experience, the DUS device was successfully applied for in vivo fetal cardiac imaging at 1.5T and 3T.
Collapse
Affiliation(s)
- Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf.,northh medical GmbH
| | - Bjoern P Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | | | - Kai Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf.,northh medical GmbH
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf.,northh medical GmbH
| |
Collapse
|
14
|
Kording F, Ruprecht C, Schoennagel B, Fehrs K, Yamamura J, Adam G, Goebel J, Nassenstein K, Maderwald S, Quick H, Kraff O. Doppler ultrasound triggering for cardiac MRI at 7T. Magn Reson Med 2017; 80:239-247. [DOI: 10.1002/mrm.27032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
Affiliation(s)
- F. Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - C. Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - B. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - K. Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - J. Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - G. Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - J. Goebel
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology; University Hospital, University Duisburg-Essen; Essen Germany
| | - K. Nassenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology; University Hospital, University Duisburg-Essen; Essen Germany
| | - S. Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
| | - H.H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital, University Duisburg-Essen; Essen Germany
| | - O. Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
| |
Collapse
|