1
|
Wright JS, Clarkson E, Kumar H, Terem I, Sharifzadeh-Kermani A, McGeown J, Maunder E, Condron P, Maso Talou G, Dubowitz D, Scadeng M, Guild SJ, Shim V, Holdsworth SJ, Kwon E. Exercise modulates brain pulsatility: insights from q-aMRI and MRI-based flow methods. Interface Focus 2025; 15:20240043. [PMID: 40191023 PMCID: PMC11969187 DOI: 10.1098/rsfs.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/29/2025] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
This study investigates intracranial dynamics following the Monro-Kellie doctrine, depicting how brain pulsatility, cerebrospinal fluid (CSF) flow and cerebral blood flow (CBF) interact under resting and exercise conditions. Using quantitative amplified magnetic resonance imaging (q-aMRI) alongside traditional MRI flow metrics, we measured and analysed blood flow, CSF dynamics and brain displacement in a cohort of healthy adults both at rest and during low-intensity handgrip exercise. Exercise was found to reduce pulsatility in CBF while increasing CSF flow and eliminating CSF regurgitation, highlighting a shift towards more sustained forward flow patterns (from cranial to spinal compartments). Displacement analysis using q-aMRI revealed a consistent trend of reduced whole brain motion during exercise, though as the sample of data that met quality control was low (n = 5), this was not a significant result. There was an observable decrease in the motion of third and fourth ventricles, linking ventricular displacement to CSF flow alterations. These findings suggest that exercise may not only affect the rate and directionality of CSF flow but also modulate brain tissue motion, supporting cerebral homeostasis. This study offers insights into how the brain adapts dynamically under varying conditions, with implications for understanding intracranial pressure regulation in humans and diagnostic contexts.
Collapse
Affiliation(s)
- Jethro Stephan Wright
- Matai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Edward Clarkson
- Matai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- General Electric Healthcare, Tairāwhiti-Gisborne, New Zealand
| | - Itamar Terem
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Alireza Sharifzadeh-Kermani
- Matai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Josh McGeown
- Matai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Paul Condron
- Matai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- University of Auckland, Auckland, New Zealand
| | - Gonzalo Maso Talou
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David Dubowitz
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Advanced MRI (CAMRI), University of Auckland, Auckland, New Zealand
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah-Jane Guild
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Matai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Samantha J. Holdsworth
- Matai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- University of Auckland, Auckland, New Zealand
| | - Eryn Kwon
- Matai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Muccio M, Sun Z, Chu D, Damadian BE, Minkoff L, Bonanni L, Ge Y. The impact of body position on neurofluid dynamics: present insights and advancements in imaging. Front Aging Neurosci 2024; 16:1454282. [PMID: 39582951 PMCID: PMC11582045 DOI: 10.3389/fnagi.2024.1454282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
The intricate neurofluid dynamics and balance is essential in preserving the structural and functional integrity of the brain. Key among these forces are: hemodynamics, such as heartbeat-driven arterial and venous blood flow, and hydrodynamics, such as cerebrospinal fluid (CSF) circulation. The delicate interplay between these dynamics is crucial for maintaining optimal homeostasis within the brain. Currently, the widely accepted framework for understanding brain functions is the Monro-Kellie's doctrine, which posits a constant sum of intracranial CSF, blood flow and brain tissue volumes. However, in recent decades, there has been a growing interest in exploring the dynamic interplay between these elements and the impact of external factors, such as daily changes in body position. CSF circulation in particular plays a crucial role in the context of neurodegeneration and dementia, since its dysfunction has been associated with impaired clearance mechanisms and accumulation of toxic substances. Despite the implementation of various invasive and non-invasive imaging techniques to investigate the intracranial hemodynamic or hydrodynamic properties, a comprehensive understanding of how all these elements interact and are influenced by body position remains wanted. Establishing a comprehensive overview of this topic is therefore crucial and could pave the way for alternative care approaches. In this review, we aim to summarize the existing understanding of intracranial hemodynamic and hydrodynamic properties, fundamental for brain homeostasis, along with factors known to influence their equilibrium. Special attention will be devoted to elucidating the effects of body position shifts, given their significance and remaining ambiguities. Furthermore, we will explore recent advancements in imaging techniques utilized for real time and non-invasive measurements of dynamic body fluid properties in-vivo.
Collapse
Affiliation(s)
- Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - David Chu
- FONAR Corporation, Melville, NY, United States
| | - Brianna E. Damadian
- Department of Radiology, Northwell Health-Lenox Hill Hospital, New York, NY, United States
| | | | | | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Malis V, Vucevic D, Bae WC, Yamamoto A, Kassai Y, Lane J, Hsiao A, Nakamura K, Miyazaki M. Fast Non-contrast MR Angiography Using a Zigzag Centric k y - k z k-space Trajectory and Exponential Refocusing Flip Angles with Restoration of Longitudinal Magnetization. Magn Reson Med Sci 2024:mp.2023-0158. [PMID: 39231732 DOI: 10.2463/mrms.mp.2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
PURPOSE Fresh blood imaging (FBI) utilizes physiological blood signal differences between diastole and systole, causing a long acquisition time. The purpose of this study is to develop a fast FBI technique using a centric ky - kz k-space trajectory (cFBI) and an exponential refocusing flip angle (eFA) scheme with fast longitudinal restoration. METHODS This study was performed on 8 healthy subjects and 2 patients (peripheral artery disease and vascular disease) with informed consent, using a clinical 3-Tesla MRI scanner. A numeric simulation using extended phase graph (EPG) and phantom studies of eFA were carried out to investigate the restoration of longitudinal signal by lowering refocusing flip angles in later echoes. cFBI was then acquired on healthy subjects at the popliteal artery station to assess the effect of varying high/low flip ratios on the longitudinal restoration effects. In addition, trigger-delays of cFBI were optimized owing to the long acquisition window in zigzag centric ky - kz k-space trajectory. After optimizations, cFBI images were compared against standard FBI (sFBI) images in terms of scan time, motion artifacts, Nyquist N/2 artifacts, blurring, and overall image quality. We also performed two-way repeated measures analysis of variance. RESULTS cFBI with eFA achieved nearly a 50% scan time reduction compared to sFBI. The high/low flip angle of 180/2 degrees with lower refocusing pulses shows fast longitudinal restoration with the highest blood signals, yet also more sensitive to the background signals. Overall, 180/30 degrees images show reasonable blood signal recovery while minimizing the background signal artifacts. After the trigger delay optimization, maximum intensity projection image of cFBI after systole-diastole subtraction demonstrates less motion and N/2 artifacts than that of sFBI. CONCLUSION Together with eFA for fast longitudinal signal restoration, the proposed cFBI technique achieved a 2-fold reduction in scan time and improved image quality without major artifacts.
Collapse
Affiliation(s)
- Vadim Malis
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Diana Vucevic
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Won C Bae
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA
| | - Asako Yamamoto
- Department of Radiology, Teikyo University, Tokyo, Japan
| | | | - John Lane
- Department of Vascular Surgery, University of California San Diego, San Diego, CA, USA
| | - Albert Hsiao
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | | | - Mitsue Miyazaki
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Vucevic D, Malis V, Bae WC, Ota H, Oshio K, McDonald MA, Miyazaki M. Visualization of Cerebrospinal Fluid Outflow and Egress along the Nerve Roots of the Lumbar Spine. Bioengineering (Basel) 2024; 11:708. [PMID: 39061790 PMCID: PMC11273714 DOI: 10.3390/bioengineering11070708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Intrinsic cerebrospinal fluid (CSF) dynamics in the brain have been extensively studied, particularly the egress sites of tagged intrinsic CSF in the meninges. Although spinal CSF recirculates within the central nervous system (CNS), we hypothesized that CSF outflows from the lumbar spinal canal. We aimed to visualize and semi-quantify the outflow using non-contrast MRI techniques. We utilized a 3 Tesla clinical MRI with a 16-channel spine coil, employing time-spatial labeling inversion (Time-SLIP) with tag-on and tag-off acquisitions, T2-weighted coronal 2D fluid-attenuated inversion recovery (FLAIR) and T2-weighted coronal 3D centric ky-kz single-shot FSE (cSSFSE). Images were acquired using time-spatial labeling inversion pulse (Time-SLIP) with tag-on and tag-off acquisitions with varying TI periods. Ten healthy volunteers with no known spinal diseases participated. Variations in tagged CSF outflow were observed across different thoracolumbar nerve root segments in all participants. We quantified CSF outflow at all lumbar levels and the psoas region. There was no significant difference among the ROIs for signal intensity. The tagged CSF outflow from the spinal canal is small but demonstrates egress to surrounding tissues. This finding may pave the way for exploring intrathecal drug delivery, understanding of CSF-related pathologies and its potential as a biomarker for peripheral neuropathy and radiculopathy.
Collapse
Affiliation(s)
- Diana Vucevic
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
| | - Vadim Malis
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
| | - Won C. Bae
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Hideki Ota
- Department of Radiology, Tohoku University, Sendai 980-8576, Miyagi, Japan;
| | - Koichi Oshio
- Department of Radiology, Juntendo University, Tokyo 113-8421, Japan;
| | - Marin A. McDonald
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
| | - Mitsue Miyazaki
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
| |
Collapse
|
5
|
Bae WC, Malis V, Vucevic D, Yamamoto A, Nakamura K, Lane J, Miyazaki M. Non-contrast MRI of micro-vascularity of the feet and toes. Jpn J Radiol 2024; 42:785-797. [PMID: 38536557 PMCID: PMC11512541 DOI: 10.1007/s11604-024-01553-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/28/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE This study aimed to develop novel non-contrast MR perfusion techniques for assessing micro-vascularity of the foot in human subjects. METHODS All experiments were performed on a clinical 3 T scanner using arterial spin labeling (ASL). Seven healthy subjects (30-72 years old, 5 males and 2 females) were enrolled and bilateral feet were imaged with tag-on and tag-off alternating inversion recovery spin labeling for determining micro-vascularity. We compared an ASL technique with 1-tag against 4-tag pulses. For perfusion, we determined signal increase ratio (SIR) at varying inversion times (TI) from 0.5 to 2 s. SIR versus TI data were fit to determine perfusion metrics of peak height (PH), time to peak (TTP), full width at half maximum (FWHM), area under the curve (AUC), and apparent blood flow (aBF) in the distal foot and individual toes. Using analysis of variance (ANOVA), effects of tag pulse and region of interest (ROI) on the mean perfusion metrics were assessed. In addition, a 4-tag pulse perfusion experiment was performed on patients with peripheral artery disease (PAD) and Raynaud's disease. RESULTS Using our MR perfusion techniques, SIR versus TI data showed well-defined leading and trailing edges, with a peak near TI of 0.75-1.0 s and subsiding quickly to near zero by TI of 2 s, particularly when 4-tag pulses were used. When imaged with 4-tag pulse, we found significantly greater values in perfusion metrics, as compared to 1-tag pulse. The patients with PAD and Raynaud's disease showed a reduced or scattered perfusion curves compared to the healthy control. CONCLUSION MR perfusion imaging of the distal foot shows greater SIR and perfusion metrics with the 4-tag pulse compared to the 1-tag pulse technique. This will likely benefit those with low perfusion due to aging, PAD, diabetic foot, and other vascular diseases.
Collapse
Affiliation(s)
- Won C Bae
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA
| | - Vadim Malis
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| | - Diana Vucevic
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| | - Asako Yamamoto
- Department of Radiology, Teikyo University, Tokyo, Japan
| | | | - John Lane
- Department of Surgery, University of California-San Diego, La Jolla, CA, USA
| | - Mitsue Miyazaki
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|