1
|
Hatabu H, Yanagawa M, Yamada Y, Hino T, Yamasaki Y, Hata A, Ueda D, Nakamura Y, Ozawa Y, Jinzaki M, Ohno Y. Recent trends in scientific research in chest radiology: What to do or not to do? That is the critical question in research. Jpn J Radiol 2025; 43:883-902. [PMID: 39815124 DOI: 10.1007/s11604-025-01735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Hereby inviting young rising stars in chest radiology in Japan for contributing what they are working currently, we would like to show the potentials and directions of the near future research trends in the research field. I will provide a reflection on my own research topics. At the end, we also would like to discuss on how to choose the themes and topics of research: What to do or not to do? We strongly believe it will stimulate and help investigators in the field.
Collapse
Affiliation(s)
- Hiroto Hatabu
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA.
| | - Masahiro Yanagawa
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Takuya Hino
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuzo Yamasaki
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinori Hata
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yusei Nakamura
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
2
|
Ohno Y, Fujisawa Y, Yoshikawa T, Seki S, Takenaka D, Fujii K, Ito Y, Kimata H, Akino N, Nagata H, Nomura M, Ueda T, Ozawa Y. Dynamic perfusion area-detector CT in non-small cell lung cancer with progressive fibrosing interstitial lung disease. Eur Radiol 2025:10.1007/s00330-025-11653-7. [PMID: 40402289 DOI: 10.1007/s00330-025-11653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVES To determine the capability of dynamic contrast-enhanced (CE-) perfusion area-detector CT (ADCT) for detecting pathological structural changes in stage I non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS Sixty-three consecutive stage I NSCLC patients with progressive fibrosing interstitial lung disease (PF-ILD) underwent dynamic CE-perfusion ADCT analyzed by dual-input maximum slope (DMS) methods for total, pulmonary arterial and systemic arterial perfusion (TPDMS, PAPDMS and SAPDMS) maps, surgical treatment and pathological examination. Multicentric ROIs were then placed over sites assessed as normal lung, pulmonary emphysema, GGO or reticular pattern without traction bronchiectasis, reticular pattern with traction bronchiectasis and honeycombing in the resected lung. Next, an analysis of variance (ANOVA) followed by Tukey's honest significant difference (HSD) multiple comparison test was performed for a comparison of each of the perfusion parameters for five groups. Finally, discrimination accuracy for evaluation of lung parenchymal change was compared for all indexes and combined methods. RESULTS PAPDMSs of abnormal lungs were significantly lower than that of normal lungs (p < 0.0001). SAPDMSs of normal or emphysematous lungs were significantly lower than those of others (p < 0.0001). SAPDMS of GGO or reticular pattern without traction bronchiectasis was significantly lower than that for reticular pattern with traction bronchiectasis and honeycombing (p < 0.0001). Discrimination accuracy of combined perfusion index was significantly higher than that of each index (p < 0.0001). CONCLUSION Dynamic CE-perfusion ADCT is useful for detecting pathological structural changes in stage I NSCLC patients with PF-ILD. KEY POINTS Question Can dynamic first-pass contrast-enhanced perfusion matrices evaluate parenchymal lung changes and disease severity of parenchymal diseases in stage I non-small cell lung cancer (NSCLC) patients? Findings Perfusion indexes differentiated significantly among normal lung, emphysema, GGO or reticular pattern without traction bronchiectasis, reticular pattern with traction bronchiectasis and honeycombing and significantly improved discrimination accuracy by combined methods. Clinical relevance Dynamic first-pass contrast-enhanced perfusion area-detector CT has the potential to assess underlying pathologies and pulmonary functional changes in stage I non-small cell carcinoma patients with progressive fibrosing interstitial lung disease.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Mediciine, Toyoake, Japan.
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Shinichiro Seki
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Fujii
- Canon Medical Systems Corporation, Otawara, Japan
| | - Yuya Ito
- Canon Medical Systems Corporation, Otawara, Japan
| | | | | | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Mediciine, Toyoake, Japan
| | - Masahiko Nomura
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
3
|
Tang FH, Wong HYT, Tsang PSW, Yau M, Tam SY, Law L, Yau K, Wong J, Farah FHM, Wong J. Recent advancements in lung cancer research: a narrative review. Transl Lung Cancer Res 2025; 14:975-990. [PMID: 40248731 PMCID: PMC12000946 DOI: 10.21037/tlcr-24-979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 04/19/2025]
Abstract
Background and Objective Lung cancer remains the leading cause of cancer-related mortality worldwide, with a 5-year survival rate ranging from 10% to 20%. The majority of cases are categorized as non-small cell lung cancer (NSCLC) (80%) and small cell lung cancer (SCLC) (20%), with NSCLC being the more prevalent type. Tobacco use, particularly cigarette smoking, is a significant contributor to over 80% of lung cancer cases. Early diagnosis is challenging due to limitations in screening methods, resulting in many cases being identified only in advanced stages. Moreover, current treatment options often exhibit low efficacy, partly due to an inadequate understanding of the disease's pathogenesis. This narrative review aims to summarize recent discoveries and advancements in lung cancer research, focusing on improvements in diagnosis, treatment, and understanding of the disease. Methods A comprehensive literature review was performed utilizing the PubMed Central database to identify recent studies relevant to lung cancer. This review synthesizes findings from various research articles to provide a cohesive summary of advancements in the field. Key Content and Findings In the past decade, notable progress has been achieved in lung cancer research, particularly concerning diagnostics and treatment strategies. Novel therapeutic approaches, including immunotherapy and genomic-targeted therapies, have demonstrated promising results. Understanding the tumor microenvironment (TME) and the role of T lymphocytes has become crucial for developing effective treatments. Additionally, advancements in immune checkpoint inhibitors (ICIs) have shown potential in enhancing patient outcomes. Improvements in tumor detection technologies are also anticipated to facilitate earlier diagnosis, ultimately contributing to better survival rates. Conclusions Significant strides have been made in lung cancer research over the last ten years, particularly in diagnostics and treatment methodologies. Future research should prioritize exploring the TME, the function of T lymphocytes, and the efficacy of ICIs while continuing to innovate in tumor detection technologies. Such efforts are essential for enhancing treatment outcomes and improving the overall quality of life for lung cancer patients.
Collapse
Affiliation(s)
- Fuk Hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Heylie Y. T. Wong
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | | | - Mabel Yau
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Shing Yau Tam
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Lawla Law
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Katherine Yau
- School of Nursing, Tung Wah College, Hong Kong, China
| | - Jade Wong
- Library, Tung Wah College, Hong Kong, China
| | | | - Jacky Wong
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| |
Collapse
|
4
|
Kim K, Kim KI, Lee JW, Jeong YJ. Unlocking the Potential of Chest MRI: Strategies for Establishing a Successful Practice. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2025; 86:83-104. [PMID: 39958489 PMCID: PMC11822286 DOI: 10.3348/jksr.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 02/18/2025]
Abstract
Chest MRI is a valuable tool for assessing chest structures, particularly when CT produces inconclusive results. MRI provides exceptional soft-tissue resolution and enables the determination of lesion location, size, and invasion into neighboring structures. Its applications span various clinical scenarios, including the differentiation of non-tumorous and tumorous conditions in the mediastinum or pleura, planning of surgical interventions and treatments for such tumors, evaluation of post-treatment recurrence, staging of lung cancer, and diagnosis of progressive massive fibrosis. Despite the technical hurdles posed by cardiac and respiratory motion, advancements in sequence and scan techniques have enabled high-quality chest MRI examinations to be conducted across diverse clinical settings. This pictorial essay aims to offer comprehensive resources and strategies for radiologists to integrate chest MRI into clinical practice and to overcome its present challenges.
Collapse
|
5
|
Lin Q, Cheng C, Bao Y, Liu WV, Zhang L, Cai Z, Wan Q, Sun C, Li X, Deng Y. A clinically-recommended MR whole lung imaging protocol using free-breathing 3D isotropic zero echo time sequence. Heliyon 2024; 10:e34098. [PMID: 39071690 PMCID: PMC11282979 DOI: 10.1016/j.heliyon.2024.e34098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
RATIONALE AND OBJECTIVES This study aimed to assess the feasibility and image quality of free-breathing 3D isotropic zero echo time (ZTE) whole-lung imaging and explore a clinically appropriate protocol for MR lung imaging. MATERIALS AND METHODS The study was approved by the local ethics committee. A total of thirty healthy volunteers were enrolled in this study from October 2022 to May 2023. Free-breathing pulmonary 3D isotropic ZTE scans were implemented with various acquisition planes and the number of excitations (NEX). ZTE images were evaluated by two radiologists for the overall Image quality and visibility of intrapulmonary structures as well as the signal-to-noise ratio (SNR) of the lung parenchyma. ZTE images with different acquisition parameters were compared. For preliminary clinical visual assessment, three patients with interstitial lung disease underwent both ZTE imaging and computed tomography (CT). RESULTS The overall image quality of the lung in healthy subjects was good to excellent. The visibilities of pulmonary arteries and bronchus were up to the 7th and 5th generation, respectively. The display of lung fissures was poor. The overall image quality, the visibility of the pulmonary artery, and lung fissures in the axial acquisition were better than in the coronal acquisition (P = 0.011, 0.008, 0.010, respectively) but not statistically different from those in the sagittal acquisition (all P > 0.05). CONCLUSION The free-breathing pulmonary ZTE is feasible and may serve as an alternative method in chest imaging. Either axial or sagittal ZTE image acquisition would be preferred in clinical practice.
Collapse
Affiliation(s)
- Qiuxi Lin
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Cheng Cheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Department of Radiology, LIWAN Central Hospital of GUANGZHOU, 510120, China
| | - Yingying Bao
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | | | - Lei Zhang
- MR Research, GE Healthcare, Beijing, 100176, China
| | - Zhaofeng Cai
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qi Wan
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Chongpeng Sun
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xinchun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yu Deng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
6
|
Ozawa Y, Nagata H, Ueda T, Oshima Y, Hamabuchi N, Yoshikawa T, Takenaka D, Ohno Y. Chest Magnetic Resonance Imaging: Advances and Clinical Care. Clin Chest Med 2024; 45:505-529. [PMID: 38816103 DOI: 10.1016/j.ccm.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Many promising study results as well as technical advances for chest magnetic resonance imaging (MRI) have demonstrated its academic and clinical potentials during the last few decades, although chest MRI has been used for relatively few clinical situations in routine clinical practice. However, the Fleischner Society as well as the Japanese Society of Magnetic Resonance in Medicine have published a few white papers to promote chest MRI in routine clinical practice. In this review, we present clinical evidence of the efficacy of chest MRI for 1) thoracic oncology and 2) pulmonary vascular diseases.
Collapse
Affiliation(s)
- Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| |
Collapse
|
7
|
Tárnoki ÁD, Tárnoki DL, Dąbrowska M, Knetki-Wróblewska M, Frille A, Stubbs H, Blyth KG, Juul AD. New developments in the imaging of lung cancer. Breathe (Sheff) 2024; 20:230176. [PMID: 38595936 PMCID: PMC11003524 DOI: 10.1183/20734735.0176-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/25/2024] [Indexed: 04/11/2024] Open
Abstract
Radiological and nuclear medicine methods play a fundamental role in the diagnosis and staging of patients with lung cancer. Imaging is essential in the detection, characterisation, staging and follow-up of lung cancer. Due to the increasing evidence, low-dose chest computed tomography (CT) screening for the early detection of lung cancer is being introduced to the clinical routine in several countries. Radiomics and radiogenomics are emerging fields reliant on artificial intelligence to improve diagnosis and personalised risk stratification. Ultrasound- and CT-guided interventions are minimally invasive methods for the diagnosis and treatment of pulmonary malignancies. In this review, we put more emphasis on the new developments in the imaging of lung cancer.
Collapse
Affiliation(s)
- Ádám Domonkos Tárnoki
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
- National Tumour Biology Laboratory, Oncologic Imaging and Invasive Diagnostic Centre, National Institute of Oncology, Budapest, Hungary
| | - Dávid László Tárnoki
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
- National Tumour Biology Laboratory, Oncologic Imaging and Invasive Diagnostic Centre, National Institute of Oncology, Budapest, Hungary
| | - Marta Dąbrowska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | | | - Armin Frille
- Department of Respiratory Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Harrison Stubbs
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kevin G. Blyth
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
8
|
Jiang H, Tian M. Cancer. TRANSPATHOLOGY 2024:297-305. [DOI: 10.1016/b978-0-323-95223-1.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Ohno Y, Ozawa Y, Nagata H, Ueda T, Yoshikawa T, Takenaka D, Koyama H. Lung Magnetic Resonance Imaging: Technical Advancements and Clinical Applications. Invest Radiol 2024; 59:38-52. [PMID: 37707840 DOI: 10.1097/rli.0000000000001017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno and H.N.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ozawa and T.U.); Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan (T.Y., D.T.); and Department of Radiology, Advanced Diagnostic Medical Imaging, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (H.K.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Ohno Y, Ozawa Y, Nagata H, Bando S, Cong S, Takahashi T, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Yoshikawa T, Takenaka D, Toyama H. Area-Detector Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2518. [PMID: 37568881 PMCID: PMC10416899 DOI: 10.3390/diagnostics13152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Shang Cong
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| |
Collapse
|
11
|
State of the Art MR Imaging for Lung Cancer TNM Stage Evaluation. Cancers (Basel) 2023; 15:cancers15030950. [PMID: 36765907 PMCID: PMC9913625 DOI: 10.3390/cancers15030950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Since the Radiology Diagnostic Oncology Group (RDOG) report had been published in 1991, magnetic resonance (MR) imaging had limited clinical availability for thoracic malignancy, as well as pulmonary diseases. However, technical advancements in MR systems, such as sequence and reconstruction methods, and adjustments in the clinical protocol for gadolinium contrast media administration have provided fruitful results and validated the utility of MR imaging (MRI) for lung cancer evaluations. These techniques include: (1) contrast-enhanced MR angiography for T-factor evaluation, (2) short-time inversion recovery turbo spin-echo sequences as well as diffusion-weighted imaging (DWI) for N-factor assessment, and (3) whole-body MRI with and without DWI and with positron emission tomography fused with MRI for M-factor or TNM stage evaluation as well as for postoperative recurrence assessment of lung cancer or other thoracic tumors using 1.5 tesla (T) or 3T systems. According to these fruitful results, the Fleischner Society has changed its position to approve of MRI for lung or thoracic diseases. The purpose of this review is to analyze recent advances in lung MRI with a particular focus on lung cancer evaluation, clinical staging, and recurrence assessment evaluation.
Collapse
|
12
|
Abrishami Kashani M, Campbell-Washburn AE, Murphy MC, Catalano OA, McDermott S, Fintelmann FJ. Magnetic Resonance Imaging for Guidance and Follow-up of Thoracic Needle Biopsies and Thermal Ablations. J Thorac Imaging 2022; 37:201-216. [PMID: 35426857 PMCID: PMC10441002 DOI: 10.1097/rti.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance imaging (MRI) is used for the guidance and follow-up of percutaneous minimally invasive interventions in many body parts. In the thorax, computed tomography (CT) is currently the most used imaging modality for the guidance and follow-up of needle biopsies and thermal ablations. Compared with CT, MRI provides excellent soft tissue contrast, lacks ionizing radiation, and allows functional imaging. The role of MRI is limited in the thorax due to the low hydrogen proton density and many air-tissue interfaces of the lung, as well as respiratory and cardiac motion. Here, we review the current experience of MR-guided thoracic needle biopsies and of MR-guided thermal ablations targeting lesions in the lung, mediastinum, and the chest wall. We provide an overview of MR-compatible biopsy needles and ablation devices. We detail relevant MRI sequences and their relative advantages and disadvantages for procedural guidance, assessment of complications, and long-term follow-up. We compare the advantages and disadvantages of CT and MR for thoracic interventions and identify areas in need of improvement and additional research.
Collapse
Affiliation(s)
| | - Adrienne E Campbell-Washburn
- Division of Intramural Research, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mark C Murphy
- Division of Thoracic Imaging and Intervention, Department of Radiology
| | - Onofrio A Catalano
- Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | | |
Collapse
|
13
|
Bak SH, Kim C, Kim CH, Ohno Y, Lee HY. Magnetic resonance imaging for lung cancer: a state-of-the-art review. PRECISION AND FUTURE MEDICINE 2022. [DOI: 10.23838/pfm.2021.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|