1
|
Girardin L, Lind N, von Tengg-Kobligk H, Balabani S, Díaz-Zuccarini V. Impact of Residual Intimal Flap Displacement Post-TEVAR on TBAD Haemodynamics in Compliant, Patient-specific CFD Simulations Informed by MRI. Ann Biomed Eng 2025:10.1007/s10439-025-03739-6. [PMID: 40346352 DOI: 10.1007/s10439-025-03739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
We propose a novel formulation of a moving boundary method to account for the motion of the intimal flap (IF) in a TBAD post-thoracic endovascular aortic repair using patient-specific compliant computational fluid dynamics simulations. The simulations were informed by non-invasive 4D flow MRI sequences. Predicted flow waveforms, aortic wall, and IF displacements were validated against in vivo 4D flow MRI and cine-MRI data. The patient-specific simulation showed that at peak systole, the dynamic interplay between high IF displacement and high transmural pressures promoted true lumen compression and false lumen expansion, whilst luminal patterns were reversed at the deceleration phase. High vorticity and swirling flow patterns were observed throughout the cardiac cycle at the primary entry tear, the descending aorta and proximal to the visceral aortic branches, correlating with high relative residence time, which could indicate an increased localised risk of aortic growth proximal to the IF. A rigid IF simulation revealed significant discrepancies in haemodynamic metrics, highlighting the potential mispredictions when using a rigid wall assumption to assess disease progression. Simulations assuming a more compliant IF highlighted potential increased risks of visceral branches malperfusion and localised aortic wall degeneration. The study underscores the necessity of patient-specific compliant IF simulations for accurate TBAD haemodynamic assessments. These insights can improve disease understanding and inform future treatment strategies.
Collapse
Affiliation(s)
- Louis Girardin
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E7JE, UK
- Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London, W1W7TS, UK
| | - Niklas Lind
- Department of Diagnostic of Interventional and Pediatric Radiology, Inselspital, 3010, Bern, Switzerland
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic of Interventional and Pediatric Radiology, Inselspital, 3010, Bern, Switzerland
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E7JE, UK
- Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London, W1W7TS, UK
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E7JE, UK.
- Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London, W1W7TS, UK.
| |
Collapse
|
2
|
Liu Y, Mu X, Wang Y, Xu Z, Song Y. The Role of 4D Flow MRI-derived Wall Shear Stress in Aortic Disease: A Comprehensive Review. Rev Cardiovasc Med 2025; 26:26735. [PMID: 40160589 PMCID: PMC11951489 DOI: 10.31083/rcm26735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 04/02/2025] Open
Abstract
Aortic diseases, such as aortic dissection and aortic rupture, often lead to catastrophic complications, significantly increasing morbidity and mortality. Population-based screening for early detection in asymptomatic individuals is not feasible due to high costs and practical challenges. However, recent advancements in four dimensions (4D) Flow magnetic resonance imaging (MRI) offer a comprehensive tool for evaluating hemodynamic changes within the aortic lumen. This technology allows for the quantification and visualization of flow patterns and the calculation of advanced hemodynamic parameters, such as wall shear stress (WSS). WSS is crucial in the development, risk stratification, and surgical outcomes of aortic diseases and their complications, enabling noninvasive and quantitative screening of high-risk populations. This review explores the current status and limitations of 4D flow MRI-derived WSS imaging for aortic disease.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
- Department of Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
| | - Xiaolin Mu
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| | - Yixin Wang
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| | - Zhe Xu
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| | - Yang Song
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| |
Collapse
|
3
|
Rodríguez EE, Valda A, Casciaro ME, Graf S, Fischer EC, Craiem D. Accuracy of flow volume estimation in the dilated aorta using 4D flow MRI: a pulsatile phantom study. Physiol Meas 2025; 13:015006. [PMID: 39820008 DOI: 10.1088/1361-6579/adab4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Objectives.Aortic dilatation is a severe pathology that increases the risk of rupture and its hemodynamics could be accurately assessed by using the 4D flow cardiovascular magnetic resonance (CMR) technique but flow assessment under complex flow patterns require validation. The aim of this work was to develop anin vitrosystem compatible with CMR to assess the accuracy of volume flow measurements in dilated aortas.Approach.Two latex models, one with ascending and the other with abdominal aortic aneurysms were manufactured to ensure a constant and controlled net flow volume along the aortic length. A pneumatic piston driven by a stepper motor and controlled by an embedded system located in the control room modulated a pulsatile fluid flow using a pump with an elastic membrane placed in the magnet near the elastic models. All the visualization and measurement algorithms were integrated into a custom computer platform. 4D flow imaging was used to estimate the flow rate and volume through multiple aortic planes and compared to the reference assessed by weight method and to 2D flow measurements.Main results.The errors of flow volume assessment using 4D flow remained within reasonable limits along the length of the aortic models. Mean differences in net flow volume from the reference were less than 2 ml (range -4 to 6 ml), corresponding to mean relative differences of less than 4% (range -8% to 11%). Averaged net, forward and backward flow volume estimations along the aortic length were similar using 2D and 4D flow measurements (p> 0.05). Peak forward and backward flow rates increased in the dilated regions and were comparable to those observed in patients.Significance.The accuracy of flow volume estimates in complex flow patterns, such as those observed in patients with aneurysms, was validatedin vitrousing 4D flow.
Collapse
Affiliation(s)
- Eduardo E Rodríguez
- Instituto de Industria, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
| | - Alejandro Valda
- Centro Universitario de Imágenes Médicas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Mariano E Casciaro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Sebastian Graf
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Edmundo Cabrera Fischer
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Damian Craiem
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Zeng W, Wang J, Weng C, Peng W, Wang T, Yuan D, Huang B, Zhao J, Xia C, Li Z, Guo Y. Assessment of aortic hemodynamics in patients with thoracoabdominal aortic aneurysm using four-dimensional magnetic resonance imaging: a cross-sectional study. Quant Imaging Med Surg 2024; 14:2800-2815. [PMID: 38617138 PMCID: PMC11007523 DOI: 10.21037/qims-23-1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/19/2024] [Indexed: 04/16/2024]
Abstract
Background Thoracoabdominal aortic aneurysms (TAAAs) are rare but complicated aortic pathologies that can result in high morbidity and mortality. The whole-aorta hemodynamic characteristics of TAAA survivors remains unknown. This study sought to obtain a comprehensive view of flow hemodynamics of the whole aorta in patients with TAAA using four-dimensional flow (4D flow) magnetic resonance imaging (MRI). Methods This study included patients who had experienced TAAA or abdominal aortic aneurysm (AAA) and age- and sex-matched volunteers who had attended China Hospital from December 2021 to December 2022 in West. Patients with unstable ruptured aneurysm or other cardiovascular diseases were excluded. 4D-flow MRI that covered the whole aorta was acquired. Both planar parameters [(regurgitation fraction (RF), peak systolic velocity (Vmax), overall wall shear stress (WSS)] and segmental parameters [pulse wave velocity (PWV) and viscous energy loss (VEL)] were generated during postprocessing. The Student's t-test or Mann-Whitney test was used to compare flow dynamics among the three groups. Results A total of 11 patients with TAAA (mean age 53.2±11.9 years; 10 males), 19 patients with AAA (mean age 58.0±11.7 years; 16 males), and 21 controls (mean age 55.4±15.0 years; 19 males) were analyzed. The patients with TAAA demonstrated a significantly higher RF and lower Vmax in the aortic arch compared to healthy controls. The whole length of the aorta in patients with TAAA was characterized by lower WSS, predominantly in the planes of pulmonary artery bifurcation and the middle infrarenal planes (all P values <0.001). As for segmental hemodynamics, compared to controls, patients with TAAA had a significantly higher PWV in the thoracic aorta (TAAA: median 11.41 m/s, IQR 9.56-14.32 m/s; control: median 7.21 m/s, IQR 5.57-7.79 m/s; P<0.001) as did those with AAA (AAA: median 8.75 m/s, IQR 7.35-10.75 m/s; control: median 7.21 m/s, IQR 5.57-7.79 m/s; P=0.024). Moreover, a greater VEL was observed in the whole aorta and abdominal aorta in patients with TAAA. Conclusions Patients with TAAA exhibited a stiffer aortic wall with a lower WSS and a greater VEL for the whole aorta, which was accompanied by a higher RF and lower peak velocity in the dilated portion of the aorta.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiarong Wang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chengxin Weng
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wanlin Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tiehao Wang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ding Yuan
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Huang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jichun Zhao
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Ma Y, Gu T, He S, He S, Jiang Z. Development of stem cell therapy for atherosclerosis. Mol Cell Biochem 2024; 479:779-791. [PMID: 37178375 DOI: 10.1007/s11010-023-04762-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.
Collapse
Affiliation(s)
- Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siqi He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhisheng Jiang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
6
|
Garg P, Markl M, Sathananthan J, Sellers SL, Meduri C, Cavalcante J. Restoration of flow in the aorta: a novel therapeutic target in aortic valve intervention. Nat Rev Cardiol 2024; 21:264-273. [PMID: 37880496 DOI: 10.1038/s41569-023-00943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Aortic blood flow patterns are closely linked to the morphology and function of the left ventricle, aortic valve and aorta. These flow patterns demonstrate the exceptional adaptability of the cardiovascular system to maintain blood circulation under a broad range of haemodynamic workloads and can be altered in various pathophysiological states. For instance, normal ascending aortic systolic flow is predominantly laminar, whereas abnormal aortic systolic flow is associated with increased eccentricity, vorticity and flow reversal. These flow abnormalities result in reduced aortic conduit function and increased energy loss in the cardiovascular system. Emerging evidence details the association of these flow patterns with loss of aortic compliance, which leads to adverse left ventricular remodelling, poor tissue perfusion, and an increased risk of morbidity and death. In this Perspective article, we review the evidence for the link between aortic flow-related abnormalities and cardiovascular disease and how these changes in aortic flow patterns are emerging as a therapeutic target for aortic valve intervention in first-in-human studies.
Collapse
Affiliation(s)
- Pankaj Garg
- University of East Anglia, Norwich Medical School, Norwich, UK.
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK.
| | - Michael Markl
- Departments of Radiology & Biomedical Engineering, Northwestern University, Feinberg School of Medicine & McCormick School of Engineering, Chicago, IL, USA
| | | | - Stephanie L Sellers
- Cardiovascular Translational Lab, St. Paul's Hospital, University of British Columbia Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Chris Meduri
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - João Cavalcante
- Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, MN, USA
| |
Collapse
|
7
|
Ebel S, Köhler B, Aggarwal A, Preim B, Behrendt B, Jung B, Gohmann RF, Riekena B, Borger M, Lurz P, Denecke T, Grothoff M, Gutberlet M. Comparison of aortic blood flow rotational direction in healthy volunteers and patients with bicuspid aortic valves using volumetric velocity-sensitive cardiovascular magnetic resonance imaging. Quant Imaging Med Surg 2023; 13:7973-7986. [PMID: 38106267 PMCID: PMC10722022 DOI: 10.21037/qims-23-183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023]
Abstract
Background The rotational direction (RD) of helical blood flow can be classified as either a clockwise (RD+) or counter-clockwise (RD-) flow. We hypothesized that this simple classification might not be sufficient for analysis in vivo and a simultaneous existence of RD+/- may occur. We utilized volumetric velocity-sensitive cardiovascular magnetic resonance imaging (4D flow MRI) to analyze rotational blood flow in the thoracic aorta. Methods Forty volunteers (22 females; mean age, 41±16 years) and seventeen patients with bicuspid aortic valves (BAVs) (9 females; mean age, 42±14 years) were prospectively included. The RDs and the calculation of the rotating blood volumes (RBVs) in the thoracic aorta were performed using a pathline-projection strategy. Results We could confirm a mainly clockwise RD in the ascending, descending aorta and in the aortic arch. Furthermore, we found a simultaneous existence of RD+/RD-. The RD+/--volume in the ascending aorta was significantly higher in BAV patients, the mean RD+/RD- percentage was approximately 80%/20% vs. 60%/40% in volunteers (P<0.01). The maximum RBV always occurred during systole. There was significantly more clockwise than counter-clockwise rotational flow in the ascending aorta (P<0.01) and the aortic arch (P<0.01), but no significant differences in the descending aorta (P=0.48). Conclusions A simultaneous occurrence of RD+/RD- indicates that a simple categorization in either of both is insufficient to describe blood flow in vivo. Rotational flow in the ascending aorta and in the aortic arch differs significantly from flow in the descending aorta. BAV patients show significantly more clockwise rotating volume in the ascending aorta compared to healthy volunteers.
Collapse
Affiliation(s)
- Sebastian Ebel
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Benjamin Köhler
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | | | - Bernhard Preim
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Benjamin Behrendt
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, University of Bern, Bern, Switzerland
| | - Robin F. Gohmann
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
| | - Boris Riekena
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
| | - Michael Borger
- Department of Cardiac Surgery, University Leipzig – Heart Centre, Leipzig, Germany
| | - Philipp Lurz
- Department of Cardiology, University Leipzig – Heart Centre, Leipzig, Germany
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Matthias Grothoff
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
| | - Matthias Gutberlet
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
| |
Collapse
|
8
|
Pepe A, Crimì F, Vernuccio F, Cabrelle G, Lupi A, Zanon C, Gambato S, Perazzolo A, Quaia E. Medical Radiology: Current Progress. Diagnostics (Basel) 2023; 13:2439. [PMID: 37510183 PMCID: PMC10378672 DOI: 10.3390/diagnostics13142439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, medical radiology has undergone significant improvements in patient management due to advancements in image acquisition by the last generation of machines, data processing, and the integration of artificial intelligence. In this way, cardiovascular imaging is one of the fastest-growing radiological subspecialties. In this study, a compressive review was focused on addressing how and why CT and MR have gained a I class indication in most cardiovascular diseases, and the potential impact of tissue and functional characterization by CT photon counting, quantitative MR mapping, and 4-D flow. Regarding rectal imaging, advances in cancer imaging using diffusion-weighted MRI sequences for identifying residual disease after neoadjuvant chemoradiotherapy and [18F] FDG PET/MRI were provided for high-resolution anatomical and functional data in oncological patients. The results present a large overview of the approach to the imaging of diffuse and focal liver diseases by US elastography, contrast-enhanced US, quantitative MRI, and CT for patient risk stratification. Italy is currently riding the wave of these improvements. The development of large networks will be crucial to create high-quality databases for patient-centered precision medicine using artificial intelligence. Dedicated radiologists with specific training and a close relationship with the referring clinicians will be essential human factors.
Collapse
Affiliation(s)
- Alessia Pepe
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Filippo Crimì
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Federica Vernuccio
- Department of Radiology, University Hospital of Padua, 35128 Padua, Italy
| | - Giulio Cabrelle
- Department of Radiology, University Hospital of Padua, 35128 Padua, Italy
| | - Amalia Lupi
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Chiara Zanon
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Sebastiano Gambato
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Anna Perazzolo
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
- Institute of Radiology, Department of Medicine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, University of Udine, 33100 Udine, Italy
| | - Emilio Quaia
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| |
Collapse
|
9
|
Manenti A, Roncati L, Farinetti A, Manco G, Mattioli AV, Coppi F. Deepening Hemodynamics of Iliac Artery Tortuosity. Ann Vasc Surg 2023; 93:450-452. [PMID: 37100274 DOI: 10.1016/j.avsg.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Antonio Manenti
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy.
| | - Luca Roncati
- Department of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Farinetti
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianrocco Manco
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Francesca Coppi
- Department of Cardiology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Manenti A, Farinetti A, Manco G, Mattioli AV, Coppi F. Inside Hemodynamics of Bifurcated Aortic Graft. Ann Vasc Surg 2023; 88:e2-e3. [PMID: 36309165 DOI: 10.1016/j.avsg.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/24/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Antonio Manenti
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy.
| | - Alberto Farinetti
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianrocco Manco
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Francesca Coppi
- Department of Cardiology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Rabineau J, Issertine M, Hoffmann F, Gerlach D, Caiani EG, Haut B, van de Borne P, Tank J, Migeotte PF. Cardiovascular deconditioning and impact of artificial gravity during 60-day head-down bed rest—Insights from 4D flow cardiac MRI. Front Physiol 2022; 13:944587. [PMID: 36277205 PMCID: PMC9586290 DOI: 10.3389/fphys.2022.944587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Microgravity has deleterious effects on the cardiovascular system. We evaluated some parameters of blood flow and vascular stiffness during 60 days of simulated microgravity in head-down tilt (HDT) bed rest. We also tested the hypothesis that daily exposure to 30 min of artificial gravity (1 g) would mitigate these adaptations. 24 healthy subjects (8 women) were evenly distributed in three groups: continuous artificial gravity, intermittent artificial gravity, or control. 4D flow cardiac MRI was acquired in horizontal position before (−9 days), during (5, 21, and 56 days), and after (+4 days) the HDT period. The false discovery rate was set at 0.05. The results are presented as median (first quartile; third quartile). No group or group × time differences were observed so the groups were combined. At the end of the HDT phase, we reported a decrease in the stroke volume allocated to the lower body (−30% [−35%; −22%]) and the upper body (−20% [−30%; +11%]), but in different proportions, reflected by an increased share of blood flow towards the upper body. The aortic pulse wave velocity increased (+16% [+9%; +25%]), and so did other markers of arterial stiffness (CAVI; CAVI0). In males, the time-averaged wall shear stress decreased (−13% [−17%; −5%]) and the relative residence time increased (+14% [+5%; +21%]), while these changes were not observed among females. Most of these parameters tended to or returned to baseline after 4 days of recovery. The effects of the artificial gravity countermeasure were not visible. We recommend increasing the load factor, the time of exposure, or combining it with physical exercise. The changes in blood flow confirmed the different adaptations occurring in the upper and lower body, with a larger share of blood volume dedicated to the upper body during (simulated) microgravity. The aorta appeared stiffer during the HDT phase, however all the changes remained subclinical and probably the sole consequence of reversible functional changes caused by reduced blood flow. Interestingly, some wall shear stress markers were more stable in females than in males. No permanent cardiovascular adaptations following 60 days of HDT bed rest were observed.
Collapse
Affiliation(s)
- Jeremy Rabineau
- LPHYS, Département de Cardiologie, Université Libre de Bruxelles, Brussels, Belgium
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- *Correspondence: Jeremy Rabineau,
| | - Margot Issertine
- LPHYS, Département de Cardiologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabian Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Darius Gerlach
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Enrico G. Caiani
- Electronic, Information and Biomedical Engineering Department, Politecnico di Milano, Milan, Italy
| | - Benoit Haut
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | |
Collapse
|
12
|
Abstract
This special issue of Magnetic Resonance in Medical Sciences features the most recent reviews on 4D Flow MRI. These reviews deal with the current status of the emerging technique of 4D Flow MRI facilitated in various areas that are difficult to obtain with conventional flowmetry. MR signals inherently contain flow velocity information. In previous decades, in vivo blood flow measurement was traditionally performed by 2D methods, such as Doppler ultrasonography and 2D phase-contrast MRI, which have long been regarded as mature techniques in hemodynamic flowmetry. Although 2D velocimetries have many advantages over 4D Flow MRI in terms of cost and accessibility, and provide excellent temporal and in-plane spatial resolutions, they also have some disadvantages. The emerging technology of 4D Flow MRI can overcome the shortcomings of conventional 2D imaging. In recent years, hemodynamic analysis has witnessed significant progress that is primarily attributable to advances in 4D Flow MRI.
Collapse
Affiliation(s)
- Yasuo Takehara
- Department of Fundamental Development for Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital
| | - Takayuki Obata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology
| |
Collapse
|