1
|
Güner G, Dereli Bulut SS. The age and gender-dependent changes in pulmonary arterial flow distribution: A cardiac magnetic resonance flow study. Eur J Radiol 2025; 187:112064. [PMID: 40154138 DOI: 10.1016/j.ejrad.2025.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/07/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE To investigate whether the pulmonary artery blood flow distribution in the normal population changes depending on age and gender using the Cardiac Magnetic Resonance Phase Contrast Imaging method. MATERIALS AND METHODS A total of 62 healthy volunteers aged 20-60 years were included in the study between September 2020 and November 2021. Participants were first divided into two groups according to their age (group 120-40 years old, group 2: 40-60 years old). Then, each group was divided into two according to gender (groups 1A, 1B and groups 2A, 2B). After routine MR sequences of mediastinum and heart (True Fast Imaging with Steady State Free Precession, short axis for heart (SA), 4-chamber, 2-chamber and 3-chamber CINE sequence). Phase Contrast imaging was performed to Main Pulmonary Artery (MPA), right PA and left PA. On the phase contrast (PC) images obtained, flow velocity, forward flow, backward flow and net forward flow volume and gradient were calculated for each artery. With these data, the distribution ratio for both pulmonary arteries was calculated. Measurements were made simultaneously by two radiologists. RESULTS In phase contrast sequence evaluation; No statistically significant correlation was found between RPA/LPA distribution ratio and Group 1 (p > 0.05). A moderate and positive correlation was found statistically between RPA/LPA distribution ratio and Group 2 (r:0.42, p:0.04). No statistically significant correlation was found between the RPA/LPA distribution ratio and the gender variable (p:0.59). CONCLUSION The distribution ratio of pulmonary blood flow to both lungs in healthy volunteers can be measured using PC-CMR without the need for invasive procedures. Knowing the normal distribution ratios according to age in the population can be used for the early diagnosis of pathological conditions.
Collapse
Affiliation(s)
- Gülbanu Güner
- Health Sciences University, Umraniye Training and Research Hospital, Department of Radiology, Istanbul, Turkey.
| | - Safiye Sanem Dereli Bulut
- Health Sciences University, Umraniye Training and Research Hospital, Department of Radiology, Istanbul, Turkey
| |
Collapse
|
2
|
Rothenberger SM, Zhang J, Markl M, Craig BA, Vlachos PP, Rayz VL. 4D flow MRI velocity uncertainty quantification. Magn Reson Med 2025; 93:397-410. [PMID: 39270010 DOI: 10.1002/mrm.30287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE An automatic method is presented for estimating 4D flow MRI velocity measurement uncertainty in each voxel. The velocity distance (VD) metric, a statistical distance between the measured velocity and local error distribution, is introduced as a novel measure of 4D flow MRI velocity measurement quality. METHODS The method uses mass conservation to assess the local velocity error variance and the standardized difference of means (SDM) velocity to estimate the velocity error correlations. VD is evaluated as the Mahalanobis distance between the local velocity measurement and the local error distribution. The uncertainty model is validated synthetically and tested in vitro under different flow resolutions and noise levels. The VD's application is demonstrated on two in vivo thoracic vasculature 4D flow datasets. RESULTS Synthetic results show the proposed uncertainty quantification method is sensitive to aliased regions across various velocity-to-noise ratios and assesses velocity error correlations in four- and six-point acquisitions with correlation errors at or under 3.2%. In vitro results demonstrate the method's sensitivity to spatial resolution, venc settings, partial volume effects, and phase wrapping error sources. Applying VD to assess in vivo 4D flow MRI in the aorta demonstrates the expected increase in measured velocity quality with contrast administration and systolic flow. CONCLUSION The proposed 4D flow MRI uncertainty quantification method assesses velocity measurement error owing to sources including noise, intravoxel phase dispersion, and velocity aliasing. This method enables rigorous comparison of 4D flow MRI datasets obtained in longitudinal studies, across patient populations, and with different MRI systems.
Collapse
Affiliation(s)
- Sean M Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Michael Markl
- Department of Radiology at the Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bruce A Craig
- Department of Statistics, Purdue University, West Lafayette, Indiana, USA
| | - Pavlos P Vlachos
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Vitaliy L Rayz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Tajima S, Isoda H, Fukunaga M, Komori Y, Naganawa S, Sadato N. Verifying the Accuracy of Hemodynamic Analysis Using High Spatial Resolution 3D Phase-contrast MR Imaging on a 7T MR System: Comparison with a 3T System. Magn Reson Med Sci 2025; 24:88-102. [PMID: 38123345 PMCID: PMC11733508 DOI: 10.2463/mrms.mp.2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Hemodynamics is important in the initiation, growth, and rupture of intracranial aneurysms. Since intracranial aneurysms are small, a high-field MR system with high spatial resolution and high SNR is desirable for this hemodynamic analysis. The purpose of this study was to investigate whether the accuracy of MR fluid dynamic (MRFD) results based on 3D phase-contrast MR (3D PC MR, non-electrocardiogram[ECG]-gated 4D Flow MRI) data from a human cerebrovascular phantom and human healthy subjects obtained by a 7T MR system was superior to those by a 3T MR system. METHODS 3D PC MR and 3D time of flight MR angiography (3D TOF MRA) imaging were performed on a 3T MR system and a 7T MR system for a human cerebrovascular phantom and 10 healthy human subjects, and MRFD analysis was performed using these data. The MRFD results from each MR system were then compared with the following items based on the computational fluid dynamics (CFD) results: 3D velocity vector field; correlation coefficient (R), angular similarity index (ASI), and magnitude similarity index (MSI) of blood flow velocity vectors. RESULTS In the MRFD results of 3D velocity vectors of the cerebrovascular phantom, noise-like vectors were observed near the vascular wall on the 3T MR system, but no noise was observed on the 7T MR system, showing results similar to those of CFD. In the MRFD results of the cerebrovascular phantom and healthy subjects, the correlation coefficients R, ASI, and MSI of the 7T MR system were higher than those of the 3T MR system, and ASI and MSI of healthy human subjects were significantly different between the two systems. CONCLUSIONS The accuracy of high spatial resolution MRFD using the 7T MR system exceeded that of the 3T MR system.
Collapse
Affiliation(s)
- Shunsuke Tajima
- Radiological Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Brain & Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | | | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kyoto, Kyoto, Japan
| |
Collapse
|
4
|
Kawano H, Yamada S, Watanabe Y, Ii S, Otani T, Ito H, Okada K, Iseki C, Tanikawa M, Wada S, Oshima M, Mase M, Yoshida K. Aging and Sex Differences in Brain Volume and Cerebral Blood Flow. Aging Dis 2024; 15:2216-2229. [PMID: 38029394 PMCID: PMC11346398 DOI: 10.14336/ad.2023.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
How do regional brain volume ratios and cerebral blood flow (CBF, mL/min) change with aging, and are there sex differences? This study aimed to comprehensively evaluate the relationships between regional brain volume ratios and CBF in healthy brains. The study participants were healthy volunteers who underwent three-dimensional T1-weighted MRI, time-of-flight MR angiography, and four-dimensional (4D) flow MRI between 2020 and 2022. The brain was automatically segmented into 21 brain subregions from 3D T1-weighted MRI, and CBF in 16 major intracranial arteries were measured by 4D flow MRI. The relationships between segmented brain volume ratios and CBFs around the circle of Willis were comprehensively investigated in each decade and sex. This study included 129 healthy volunteers (mean age ± SD, 48.2 ± 16.8; range, 22-92 years; 43 males and 86 females). The association was strongest between the cortical gray matter volume ratio and total outflow of the intracranial major arteries distal to the circle of Willis (Pearson's correlation coefficient, r: 0.425). In addition, the mean flow of the total inflow and outflow around the circle of Willis were significantly greater in women than men, and significant left-right differences were observed in CBFs even on the peripheral side of the circle of Willis. Moreover, the correlation was strongest between the left cortical gray matter volume ratio and the combined flows of the left anterior and posterior cerebral arteries distal to the circle of Willis (r: 0.486). There was a trend toward greater total intracranial CBF, especially among women in their 40s and younger, who had a larger cortical gray matter volume. This finding may be one of the reasons for the approximately twofold higher incidence of cerebral aneurysms and subarachnoid hemorrhage, and a threefold higher incidence of migraine headaches.
Collapse
Affiliation(s)
- Hiroto Kawano
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan.
| | - Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Aichi, Japan.
- Interfaculty Initiative in Information Studies / Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Shiga, Japan.
| | - Satoshi Ii
- Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan.
| | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| | - Hirotaka Ito
- Medical System Research & Development Center, FUJIFILM Corporation, Tokyo, Japan.
| | - Ko Okada
- Medical System Research & Development Center, FUJIFILM Corporation, Tokyo, Japan.
| | - Chifumi Iseki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata, Japan.
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Aichi, Japan.
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| | - Marie Oshima
- Interfaculty Initiative in Information Studies / Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Aichi, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan.
| |
Collapse
|
5
|
Fischer K, Grob L, Setz L, Jung B, Neuenschwander MD, Utz CD, von Tengg-Kobligk H, Huber AT, Friess JO, Guensch DP. Direct comparison of whole heart quantifications between different retrospective and prospective gated 4D flow CMR acquisitions. Front Cardiovasc Med 2024; 11:1411752. [PMID: 39145279 PMCID: PMC11322094 DOI: 10.3389/fcvm.2024.1411752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction 4D flow cardiovascular magnetic resonance (CMR) is a versatile technique to non-invasively assess cardiovascular hemodynamics. With developing technology, choice in sequences and acquisition parameters is expanding and it is important to assess if data acquired with these different variants can be directly compared, especially when combining datasets within research studies. For example, sequences may allow a choice in gating techniques or be limited to one method, yet there is not a direct comparison investigating how gating selection impacts quantifications of the great vessels, semilunar and atrioventricular valves and ventricles. Thus, this study investigated if quantifications across the heart from contemporary 4D flow sequences are comparable between two commonly used 4D flow sequences reliant on different ECG gating techniques. Methods Forty participants (33 healthy controls, seven patients with coronary artery disease and abnormal diastolic function) were prospectively recruited into a single-centre observational study to undergo a 3T-CMR exam. Two acquisitions, a k-t GRAPPA 4D flow with prospective gating (4Dprosp) and a modern compressed sensing 4D flow with retrospective gating (4Dretro), were acquired in each participant. Images were analyzed for volumes, flow rates and velocities in the vessels and four valves, and for biventricular kinetic energy and flow components. Data was compared for group differences with paired t-tests and for agreement with Bland-Altman and intraclass correlation (ICC). Results Measurements primarily occurring during systole of the great vessels, semilunar valves and both left and right ventricles did not differ between acquisition types (p > 0.05 from t-test) and yielded good to excellent agreement (ICC: 0.75-0.99). Similar findings were observed for the majority of parameters dependent on early diastole. However, measurements occurring in late diastole or those reliant on the entire-cardiac cycle such as flow component volumes along with diastolic kinetic energy values were not similar between 4Dprosp and 4Dretro acquisitions resulting in poor agreement (ICC < 0.50). Discussion Direct comparison of measurements between two different 4D flow acquisitions reliant on different gating methods demonstrated systolic and early diastolic markers across the heart should be compatible when comparing these two 4D flow sequences. On the other hand, late diastolic and intraventricular parameters should be compared with caution.
Collapse
Affiliation(s)
- Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Leonard Grob
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Louis Setz
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Sitem-Insel, Bern, Switzerland
| | - Mario D. Neuenschwander
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph D. Utz
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Sitem-Insel, Bern, Switzerland
| | - Adrian T. Huber
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, University of Lucerne, Lucerne, Switzerland
| | - Jan O. Friess
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominik P. Guensch
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 2024; 119:371-395. [PMID: 38700707 PMCID: PMC11143007 DOI: 10.1007/s00395-024-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Vascular Remodeling
- Extracellular Matrix/pathology
- Extracellular Matrix/metabolism
- Phenotype
Collapse
Affiliation(s)
- Berta H Ganizada
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Disease, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Nallamothu T, Pradella M, Markl M, Greenland P, Passman R, Elbaz MS. Robust and fast stochastic 4D flow vector-field signature technique for quantifying composite flow dynamics from 4D flow MRI: Application to left atrial flow in atrial fibrillation. Med Image Anal 2024; 92:103065. [PMID: 38113616 PMCID: PMC12005390 DOI: 10.1016/j.media.2023.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
4D flow MRI is an emerging imaging modality that maps voxel-wise blood flow information as velocity vector fields that is acquired in 7-dimensional image volumes (3 spatial dimensions + 3 velocity directions + time). Blood flow in the cardiovascular system is often complex and composite involving multiple flow dynamics and patterns (e.g., vortex flow, jets, stagnating flow) that occur and interact simultaneously. The spectrum of such complex flow dynamics is embedded in the velocity vector field dynamics derived from 4D Flow MRI. However, current flow metrics cannot fully measure high-dimensional vector-field data and embedded complex composite flow data. Instead, these methods need to break down the vector-field data into secondary scalar fields of individual flow components using fluid dynamics operators. These methods are gradient-based and sensitive to data uncertainties, and only focus on individual flow components of the overall composite flow, therefore potentially underestimating the severity of overall flow changes associated with cardiovascular diseases. To address these limitations, in MICCAI 2021, we introduced a novel comprehensive stochastic 4D Flow vector-field signature technique that works directly on the entire spatiotemporal velocity vector field. This technique uses efficient stochastic gradient-free interrogation of multi-million flow vector-pairs per patient to derive the patient's unique flow profile of the complex composite flow alterations and in real-time processing. The signature technique's probabilistic gradient-free formulation should allow for highly robust quantification despite inherent errors in 4D flow MRI acquisitions. Here, we extend the application of the 4D flow vector-field signature technique to the left atrium to analyze complex composite flow changes in patients with atrial fibrillation. In 128 subjects, we performed extensive sensitivity testing and determined that the vector-field signature technique is highly robust to typical sources of data uncertainties in 4D flow MRI: degradation in spatiotemporal resolution, added Gaussian noise, and segmentation errors. We demonstrate the excellent generalizability of the stochastic convergence from the aorta to the left atrium and between different 4D Flow MRI acquisition protocols. We compare the robustness of our technique to existing advanced flow quantification metrics of kinetic energy, vorticity, and energy loss demonstrating a superior performance of up-to 14-fold. Our results show the potential diagnostic and clinical utility of our signature technique in identifying distinctly altered composite flow signatures in atrial fibrillation patients independent of existing flow metrics.
Collapse
Affiliation(s)
- Thara Nallamothu
- Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Maurice Pradella
- Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Radiology, Clinic of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Michael Markl
- Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rod Passman
- Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mohammed Sm Elbaz
- Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
8
|
Hyodo R, Takehara Y, Naganawa S. 4D Flow MRI in the portal venous system: imaging and analysis methods, and clinical applications. Radiol Med 2022; 127:1181-1198. [PMID: 36123520 PMCID: PMC9587937 DOI: 10.1007/s11547-022-01553-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 02/07/2023]
Abstract
Thus far, ultrasound, CT, and 2D cine phase-contrast MRI has been adopted to evaluate blood flow and vascular morphology in the portal venous system; however, all these techniques have some shortcomings, such as limited field of view and difficulty in accurately evaluating blood flow. A new imaging technique, namely 3D cine phase-contrast (4D Flow) MRI, can acquire blood flow data of the entire abdomen at once and in a time-resolved manner, allowing visual, quantitative, and comprehensive assessment of blood flow in the portal venous system. In addition, a retrospective blood flow analysis, i.e., "retrospective flowmetry," is possible. Although the development of 4D Flow MRI for the portal system has been delayed compared to that for the arterial system owing to the lower flow velocity of the portal venous system and the presence of respiratory artifacts, several useful reports have recently been published as the technology has advanced. In the first part of this narrative review article, technical considerations of image acquisition and analysis methods of 4D Flow MRI for the portal venous system and the validations of their results are described. In the second part, the current clinical application of 4D Flow MRI for the portal venous system is reviewed.
Collapse
Affiliation(s)
- Ryota Hyodo
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yasuo Takehara
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
Abstract
This special issue of Magnetic Resonance in Medical Sciences features the most recent reviews on 4D Flow MRI. These reviews deal with the current status of the emerging technique of 4D Flow MRI facilitated in various areas that are difficult to obtain with conventional flowmetry. MR signals inherently contain flow velocity information. In previous decades, in vivo blood flow measurement was traditionally performed by 2D methods, such as Doppler ultrasonography and 2D phase-contrast MRI, which have long been regarded as mature techniques in hemodynamic flowmetry. Although 2D velocimetries have many advantages over 4D Flow MRI in terms of cost and accessibility, and provide excellent temporal and in-plane spatial resolutions, they also have some disadvantages. The emerging technology of 4D Flow MRI can overcome the shortcomings of conventional 2D imaging. In recent years, hemodynamic analysis has witnessed significant progress that is primarily attributable to advances in 4D Flow MRI.
Collapse
Affiliation(s)
- Yasuo Takehara
- Department of Fundamental Development for Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital
| | - Takayuki Obata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology
| |
Collapse
|