1
|
Zhang H, Zhao Y, Gong W, Duan C, Xiao Y, Wang Y, Nie X. Ibuprofen exposure interferes with the mitochondrial dynamics processes and affects lipid metabolism in the yellowstripe goby (Mugilogobius chulae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107372. [PMID: 40294544 DOI: 10.1016/j.aquatox.2025.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/06/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
Ibuprofen (IBU), a prevalent non-steroidal anti-inflammatory drug (NSAID), is extensively utilized in medical practices. Especially since the popularity of COVID-19, its use has become more widespread, coupled with its low degradation rate and high environmental residues. Thus, more focus is warranted on the possible detrimental impacts on non-target organisms, as well as the underlying mechanisms of toxicity. The present study investigated the relationships and molecular mechanisms between hepatic mitochondrial dynamics processes and lipid metabolism in the yellowstripe goby (Mugilogobius chulae) exposed to IBU at concentrations of 0.5, 5, 50, and 500 μg/L over 7 days. The results showed that IBU exposure inhibited mitochondrial biogenesis and fusion but promoted mitochondrial fission by interfering with the SESN/PGC/ULK signaling pathway, causing an imbalance in mitochondrial dynamics. Thus, high concentration of IBU exposure caused mitochondrial dysfunction and oxidative stress. Molecular biological evidences suggested that IBU caused a decrease in ATP production and lipogenesis, leading to an energetic crisis in M. chulae. Hepatic tissue also showed a significant decrease in relative weight, an increase in mitochondrial damage and adipocyte degeneration. Correspondingly, the exposed organism attempted to mitigate these crises by promoting mitophagy and lipophagy via the Pink-Parkin pathway. Overall, IBU exposure interfered with mitochondrial dynamics processes and caused abnormalities in hepatic lipid metabolism in M. chulae. The present study highlighted the discovery of mitochondrial dynamics imbalance to lipid dysregulation cascade mechanism. We emphasized the negative effects of NSAIDs such as IBU on aquatic non-target organisms at different levels. It provided valuable insights into the ecological risk assessment of IBU in aquatic environments.
Collapse
Affiliation(s)
- Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Marchlewicz A, Dzionek A, Wojcieszyńska D, Borgulat J, Jałowiecki Ł, Guzik U. Changes in Ibuprofen Toxicity and Degradation in Response to Immobilization of Bacillus thuringiensis B1(2015b). Molecules 2024; 29:5680. [PMID: 39683839 DOI: 10.3390/molecules29235680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Ibuprofen is one of the most commonly used anti-inflammatory drugs by humans, resulting in its appearance in the environment, which can negatively affect organisms living in it. The studies undertaken have shown that the immobilized Bacillus thuringiensis B1(2015b) strain can decompose this drug at a rate of qmax = 0.36 mg/L*h, with a Ks constant of 0.95 mg/L for this process. An analysis of the effect of ibuprofen on the metabolic profile of the immobilized strain B1(2015b) showed an increase in the consumption of carbon, nitrogen, phosphorus, and sulfur compounds by this strain compared to the free strain. Studies on the toxicity of ibuprofen against the B1(2015b) strain indicated a small protective effect of the carrier, manifested by a slightly higher EC50 value = 1190 mg/L (for the free strain EC50 = 1175 mg/L). A toxicity analysis of intermedia formed during ibuprofen degradation indicated that the increase in toxicity is positively correlated with the degree of hydroxylation of ibuprofen metabolites. A toxicity analysis of the post-culture fluid obtained after ibuprofen degradation by the immobilized and free strain indicated that the products formed due to this process are completely safe.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Dzionek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Jacek Borgulat
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
| | - Łukasz Jałowiecki
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
3
|
Ogunwole GA, Adeyemi JA, Saliu JK, Olorundare KE. A computational analysis of the molecular mechanisms underlying the effects of ibuprofen and dibutyl phthalate on gene expression in fish. Heliyon 2024; 10:e31880. [PMID: 38845962 PMCID: PMC11153241 DOI: 10.1016/j.heliyon.2024.e31880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The impact of emerging pollutants such as ibuprofen and dibutyl phthalate on aquatic species is a growing concern and the need for proper assessment and evaluation of these toxicants is imperative. The objective of this study was to examine the toxicogenomic impacts of ibuprofen and dibutyl phthalate on Clarias gariepinus, a widely distributed African catfish species. Results showed that exposure to the test compounds caused significant changes in gene expression, including upregulation of growth hormone, interleukin, melatonin receptors, 17β-Hydroxysteroid Dehydrogenase, heat shock protein, doublesex, and mab-3 related transcription factor. On the other hand, expression of forkhead Box Protein L2 and cytochrome P450 was downregulated, revealing a potential to induce female to male sex reversal. The binding affinities and hydrophobic interactions of the test compounds with the reference genes were also studied, showing that ibuprofen had the lowest binding energy and the highest affinity for the docked genes. Both compounds revealed a mutual molecular interaction with amino acids residues within the catalytic cavity of the docked genes. These results provide new insights into the toxic effects of ibuprofen and dibutyl phthalate on Clarias gariepinus, contributing to a better understanding of the environmental impact of these pollutants.
Collapse
Affiliation(s)
- Germaine Akinola Ogunwole
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| | - Joseph Adewuyi Adeyemi
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| | - Joseph Kayode Saliu
- Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Kayode Emmanuel Olorundare
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| |
Collapse
|
4
|
Shehu Z, Nyakairu GWA, Tebandeke E, Odume ON. Overview of African water resources contamination by contaminants of emerging concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158303. [PMID: 36030854 DOI: 10.1016/j.scitotenv.2022.158303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This review look at several classes of contaminants of emerging concern (CECs) in conventional and non-conventional water resources across the African continent's five regions. According to the review, pharmaceuticals, endocrine-disrupting chemicals, personal care products, pesticides, per- and polyfluoroalkyl compounds, and microplastics were found in conventional and non-conventional water resources. Most conventional water resources, such as rivers, streams, lakes, wells, and boreholes, are used as drinking water sources. Non-conventional water sources, such as treated wastewater (effluents), are used for domestic and agricultural purposes. However, CECs remain part of the treated wastewater, which is being discharged to surface water or used for agriculture. Thus, wastewater (effluent) is the main contributor to the pollution of other water resources. For African countries, the prevalence of rising emerging pollutants in water poses a severe environmental threat. There are different adverse effects of CECs, including the development of antibiotic-resistant bacteria, ecotoxicological effects, and several endocrine disorders. Therefore, this needs the urgent attention of the African Union, policymakers, Non-Governmental Organizations, and researchers to come together and tackle the problem.
Collapse
Affiliation(s)
- Zaccheus Shehu
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Department of Chemistry, Gombe State University, P.M. B. 127, Gombe, Nigeria
| | | | - Emmanuel Tebandeke
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | |
Collapse
|
5
|
Ogunwole GA, Saliu JK, Osuala FI, Odunjo FO. Chronic levels of ibuprofen induces haematoxic and histopathology damage in the gills, liver, and kidney of the African sharptooth catfish (Clarias gariepinus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25603-25613. [PMID: 33464528 DOI: 10.1007/s11356-020-12286-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Numerous active pharmaceutical ingredients (APIs) have been detected in various environmental matrices. Thus, their potential to elicit their toxic effect on non-target organisms is a growing concern, especially in the aquatic environment. This study aimed to investigate the potential toxicity of ibuprofen (IBU) at environmentally relevant concentration on the haematology and histology of the gill, liver, and kidney over 30 days. The 96-h acute toxicity data showed that IBU was moderately toxic to C. gariepinus with an LC50 value of 3.78 mg/L. After 15 and 30 days of exposure, there was a significant alteration in haematological indices in the treated fishes when compared to the control group. Throughout the experimental duration, the level of the mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH) were consistently lower significantly, in contrast to the control group. IBU induced histopathological deformities in the gills, liver, and kidney of the exposed fishes, with alterations such as showing severe secondary lamella necrosis (SLN), epithelial lifting (EL), mild deformity of the secondary lamella (DSL), mild secondary lamella necrosis (MLN), and mild vascular congestion in the liver and kidney, respectively. This study has demonstrated that IBU at environmentally relevant concentrations can significantly impact the haematology, gills, liver, and kidney of C. gariepinus. This study's results can provide baseline info for regulatory agencies to set safe limits for NSAIDs as a safeguard for the aquatic environment.
Collapse
Affiliation(s)
- Germaine Akinola Ogunwole
- Department of Biology, School of Sciences, Federal University of Technology, Akure, P.M.B 704, Akure, Ondo, Nigeria.
| | - Joseph Kayode Saliu
- Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Fidelia Ijeoma Osuala
- Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Faith Oluwaseyi Odunjo
- Department of Biology, School of Sciences, Federal University of Technology, Akure, P.M.B 704, Akure, Ondo, Nigeria
| |
Collapse
|
6
|
Contaminants of Emerging Concern in African Wastewater Effluents: Occurrence, Impact and Removal Technologies. SUSTAINABILITY 2021. [DOI: 10.3390/su13031125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Worldwide, the pollution of water bodies by contaminants of emerging concern (CECs) such as pharmaceuticals, endocrine disrupting compounds, flame retardants including brominated flame retardants (BFRs) and perfluorochemicals (PFCs), micro plastics, nanomaterials, and algal toxins, to name just a few, is creating a new set of challenges to the conventional wastewater treatment facilities, which demonstrate inefficiency in removing/degrading many CECs. As a consequence, environmentalists started to detect the presence of some of those contaminants at alarming levels in certain countries, with possible negative effects on aquatic species and often increased potential for human health risks through the exposure to the contaminated waters, or the reuse of treated wastewater in agriculture and household use. Such issues are more accentuated in the African continent due to various socio-economic problems giving rise to poor sanitation systems and serious shortages in wastewater treatment plants in many regions, making it difficult to tackle the problem of conventional pollutants, let alone to deal with the more challenging CECs. Thus, in order to effectively deal with this emerging environmental threat, African researchers are working to develop and optimize sound sampling and analytical procedures, risk assessment models, and efficient remediation technologies. In this review, related recent research efforts conducted in African universities and research institutions will be presented and discussed with respect to the occurrence and assessment of CECs in African wastewater effluents, the potential risks to aquatic ecosystems and humans, the tailored remediation techniques, along with some knowledge gaps and new research directions.
Collapse
|