1
|
Păucean A, Șerban LR, Chiș MS, Mureșan V, Pușcaș A, Man SM, Pop CR, Socaci SA, Igual M, Ranga F, Alexa E, Berbecea A, Pop A. Nutritional composition, in vitro carbohydrates digestibility, textural and sensory characteristics of bread as affected by ancient wheat flour type and sourdough fermentation time. Food Chem X 2024; 22:101298. [PMID: 38586221 PMCID: PMC10997827 DOI: 10.1016/j.fochx.2024.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
This study aimed to investigate the effect of ancient wheat flour type and sourdough fermentation time on the nutritional, textural and sensorial properties of fiber-rich sourdough bread. The proximate composition, minerals, carbohydrates, organic acids, volatiles, total phenolic content, simulated gastrointestinal digestion, textural and sensorial characteristics were investigated. Bread's minerals, total phenolics, cellulose contents and radical scavenging activity variations clearly indicates an increasing trend with sourdoughs fermentation time. Compared to maltose and glucose, fructose was predominant in all bread samples. Sourdough fermentation time and wheat type had non-significant influence on fructose content from digested fraction. Excepting emmer bread, fermentation time increased in vitro digestibility values for tested samples. The crumb textural parameters (hardness, gumminess, chewiness, cohesiveness and springiness index) were positively influenced by fermentation time. The specific clustering of the analysed characteristics distinguished emmer bread from other samples in terms of volatile compounds, textural and overall acceptability, being preferred by panellists.
Collapse
Affiliation(s)
- Adriana Păucean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Larisa-Rebeca Șerban
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Vlad Mureșan
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Simona Maria Man
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Marta Igual
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Floricuța Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - Ersilia Alexa
- Department of Food Control, Faculty of Agro-Food Technologies, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timișoara, Romania
| | - Adina Berbecea
- Department of Soil Sciences, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania”,119 Aradului Avenue, 300641 Timișoara, Romania
| | - Anamaria Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Brandolini A, Lucisano M, Mariotti M, Estivi L, Hidalgo A. Breadmaking Performance of Elite Einkorn ( Triticum monococcum L. subsp. monococcum) Lines: Evaluation of Flour, Dough and Bread Characteristics. Foods 2023; 12:foods12081610. [PMID: 37107405 PMCID: PMC10137832 DOI: 10.3390/foods12081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Einkorn flour, rich in proteins, carotenoids, and other antioxidants, generally has poor breadmaking value. In this research, the composition and technological characteristics of the flours and breads of two elite einkorns (Monlis and ID331) and a bread wheat (Blasco), cropped in four different environments, were evaluated. The einkorns confirmed better flour composition than bread wheat for proteins (on average, 16.5 vs. 10.5 g/100 g), soluble pentosans (1.03 vs. 0.85 g/100 g), and yellow pigment (10.0 vs. 1.0 mg/kg). Technologically, they had better SDS sedimentation values (89 vs. 66 mL), lower farinographic water absorption (52.6 vs. 58.8%), and a similar development time, stability, and degree of softening. Viscoelasticity tests showed lower storage and loss moduli and more prevalent elastic behaviour for Blasco, while rheofermentographic tests showed an anticipated development time (120.8 vs. 175.0 min), higher maximum height (73.0 vs. 63.0 mm), and superior retention coefficient (99.1 vs. 88.7%), but a lower CO2 total (1152 vs. 1713 mL) for einkorn doughs. Einkorn breads were bigger than the control (736 vs. 671 cm3); crumb pores percentage was similar, but medium-size pores were scarcer. Finally, a 52-h shelf-life trial demonstrated that einkorn bread had a softer texture, maintained for a longer time, and a slower retrogradation than the control. Therefore, choice of appropriate varieties and process optimisation allows the production of excellent einkorn breads with a superior nutritional value and longer shelf life.
Collapse
Affiliation(s)
- Andrea Brandolini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Unità di Ricerca per la Zootecnia e l'Acquacoltura (CREA-ZA), Via Piacenza 29, 26900 Lodi, Italy
| | - Mara Lucisano
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Manuela Mariotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Lorenzo Estivi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Alyssa Hidalgo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
3
|
Bread-Making Potential and Yielding of Hybrid Wheat Under Varied Agronomic and Environmental Factors. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
The purpose of this study was to determine the effect of simplified tillage systems (RT, NT) in comparison with conventional tillage (CT) on technological grain quality and baking value, as well as of hybrid wheat grown under variable weather conditions. A three-year field trial experiment was conducted using a randomised block design, in triplicate. The factors studied were as follows: I - three tillage systems - no-tillage (NT), reduced (RT), and conventional (CT); II - two winter wheat cultivars ‘Hylux’ (cv. hybrid) and for comparison ‘Bogatka’ (cv. common). The use of CT and RT tillage systems compared to NT significantly increased yield by 8.9 and 7.7%, respectively, and selected grain quality parameters along with a more favorable gluten protein profile. The flour obtained, with water absorption above 58.0%, can be classified as strong flour with good farinographic and alveograph parameters. The genetic characteristics of the wheat cultivars determined the technological quality of the grain and the baking value, as well as the grain yield. For ‘Hylux’ cv. hybrid wheat, there was a higher yield and better grain quality, which contained significantly more gliadins and glutenins, and the flour was characterised by higher parameters that determine the preferred viscoelastic properties of the dough. The common ‘Bogatka’ wheat cv. accumulated higher contents of ω gliadins and LMW and HMW glutenin subunits in the grain, while for α/β and γ gliadin contents the difference was not significant. A fairly dry period (June–July) of wheat ripening reduced the grain yield but was favourable for higher values of quality characteristics, gluten protein fractions, as well as the farinographic (WAF, DDT, DS) and alveograph (W, P, L) parameters.
Collapse
|