1
|
Armonavičius D, Stankevičius M, Maruška A. Extraction of Bioactive Compounds and Influence of Storage Conditions of Raw Material Chamaenerion angustifolium (L.) Holub Using Different Strategies. Molecules 2024; 29:5530. [PMID: 39683690 DOI: 10.3390/molecules29235530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The study evaluates different preparation methods for identifying the best strategy for extracting biologically active compounds from raw Chamaenerion angustifolium (L.) Holub plant material. The methodologies include direct aqueous methanol extraction with a combination of natural aerobic and anaerobic fermentation for 24-72 h, followed by 35 °C and 60 °C drying. Furthermore, the study also focuses on determining the different temperature storage conditions on the stability of biologically active compounds. UV-VIS spectroscopy was used to quantitatively evaluate the total content of phenolic compounds, flavonoids, and radical scavenging activity. For qualitative analysis, chromatographic separation with electrochemical detection (ED) of extracted compounds, a gradient high-performance liquid chromatography (HPLC) system was used. Study results indicate that 48 h natural aerobic fermentation followed by 35 °C drying and 75% (v/v) aqueous methanol extraction yielded the maximum amount of biologically active compounds in Chamaenerion angustifolium (L.) Holub leaves, blossom, and stem samples. Freezing samples in liquid nitrogen had the lowest impact on the total content of phenolic compounds, flavonoids, and radical scavenging activity. HPLC-ED system results identified chlorogenic acid, oenothein B, trans-p-Coumaric acid, ellagic acid, and rutin in Chamaenerion angustifolium (L.) Holub leave samples.
Collapse
Affiliation(s)
- Domantas Armonavičius
- Instrumental Analysis Open Access Centre, Institute of Research of Natural and Technological Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404 Kaunas, Lithuania
| | - Mantas Stankevičius
- Instrumental Analysis Open Access Centre, Institute of Research of Natural and Technological Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404 Kaunas, Lithuania
| | - Audrius Maruška
- Instrumental Analysis Open Access Centre, Institute of Research of Natural and Technological Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404 Kaunas, Lithuania
| |
Collapse
|
2
|
Kyriakou S, Tragkola V, Paraskevaidis I, Plioukas M, Trafalis DT, Franco R, Pappa A, Panayiotidis MI. Chemical Characterization and Biological Evaluation of Epilobium parviflorum Extracts in an In Vitro Model of Human Malignant Melanoma. PLANTS (BASEL, SWITZERLAND) 2023; 12:1590. [PMID: 37111814 PMCID: PMC10146124 DOI: 10.3390/plants12081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Malignant melanoma is an aggressive type of skin cancer characterised by high metastatic capacity and mortality rate. On the other hand, Epilobium parviflorum is known for its medicinal properties, including its anticancer potency. In this context, we aimed to (i) isolate various extracts of E. parviflorum, (ii) characterize their phytochemical content, and (iii) determine their cytotoxic potential in an in vitro model of human malignant melanoma. To these ends, we utilized various spectrophotometric and chromatographic (UPLC-MS/MS) approaches to document the higher content of the methanolic extract in polyphenols, soluble sugars, proteins, condensed tannins, and chlorophylls -a and -b as opposed to those of dichloromethane and petroleum. In addition, the cytotoxicity profiling of all extracts was assessed through a colorimetric-based Alamar Blue assay in human malignant melanoma (A375 and COLO-679) as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Overall, the methanolic extract was shown to exert significant cytotoxicity, in a time- and concentration-dependent manner, as opposed to the other extracts. The observed cytotoxicity was confined only to human malignant melanoma cells, whereas non-tumorigenic keratinocyte cells remained relatively unaffected. Finally, the expression levels of various apoptotic genes were assessed by qRT-PCR, indicating the activation of both intrinsic and extrinsic apoptotic cascades.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Venetia Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Ioannis Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Mihalis Plioukas
- Department of Life & Health Sciences, School of Sciences & Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
3
|
Perużyńska M, Nowak A, Birger R, Ossowicz-Rupniewska P, Konopacki M, Rakoczy R, Kucharski Ł, Wenelska K, Klimowicz A, Droździk M, Kurzawski M. Anticancer properties of bacterial cellulose membrane containing ethanolic extract of Epilobium angustifolium L. Front Bioeng Biotechnol 2023; 11:1133345. [PMID: 36890919 PMCID: PMC9986418 DOI: 10.3389/fbioe.2023.1133345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Epilobium angustifolium L. is a medicinal plant well known for its anti-inflammatory, antibacterial, antioxidant, and anticancer properties related to its high polyphenols content. In the present study, we evaluated the antiproliferative properties of ethanolic extract of E. angustifolium (EAE) against normal human fibroblasts (HDF) and selected cancer cell lines, including melanoma (A375), breast (MCF7), colon (HT-29), lung (A549) and liver (HepG2). Next, bacterial cellulose (BC) membranes were applied as a matrix for the controlled delivery of the plant extract (BC-EAE) and characterized by thermogravimetry (TG), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) images. In addition, EAE loading and kinetic release were defined. Finally, the anticancer activity of BC-EAE was evaluated against the HT-29 cell line, which presented the highest sensitivity to the tested plant extract (IC50 = 61.73 ± 6.42 µM). Our study confirmed the biocompatibility of empty BC and the dose and time-dependent cytotoxicity of the released EAE. The plant extract released from BC-2.5%EAE significantly reduced cell viability to 18.16% and 6.15% of the control values and increased number apoptotic/dead cells up to 37.53% and 66.90% after 48 and 72 h of treatment, respectively. In conclusion, our study has shown that BC membranes could be used as a carrier for the delivery of higher doses of anticancer compounds released in a sustained manner in the target tissue.
Collapse
Affiliation(s)
- Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Radosław Birger
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Karolina Wenelska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
4
|
Comparative Analysis of the Efficiency of Medicinal Plants for the Treatment and Prevention of COVID-19. Int J Biomater 2022; 2022:5943649. [DOI: 10.1155/2022/5943649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic has once again prompted people to resort to the remedies of folk and alternative medicine. Medicinal plants, because of their chemical composition, pharmacological properties, and the action of biologically active substances, can stop and relieve the symptoms of the disease. The purpose of the work is a comparative flora analysis of medicinal plants to identify the most prospective plant and further production of a remedy for the avoidance, treatment, and rehabilitation of COVID-19. The search for prospective medicinal plants was performed by analyzing the literature in online databases: Web of Science, Scopus, Google Scholar, and PubMed, including official WHO media sites. According to recent studies related to COVID-19, a significant number of medicinal plants with anti-inflammatory, antiviral, and immunostimulatory effects have been identified. A comparative study of nine medicinal plants was conducted to determine the most suitable medicinal plant to treat coronavirus infection. According to the results of the comparative analysis, Chamaenerion angustifolium Seg. showed itself as the most prospective medicinal plant with the greatest pharmacological effect compared with other types of medicinal plants. Its therapeutic properties allow physiological relief of 18 symptoms of coronavirus infection. It is advisable to conduct further clinical trials for the treatment and rehabilitation of COVID-19 using preparations from this plant.
Collapse
|
5
|
Content of sterols in in vitro propagated Chamerion angustifolium (L.) Holub plants. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Summary
Introduction:
Chamerion angustifolium (L.) Holub (syn. Epilobium angustifolium L.) plants have been used in the treatment and alleviating symptoms of mild Benign Prostatic Hyperplasia (BPH). Plants are abundant in polyphenols, particularly ellagitannins, phenolic acids and flavonoids. Apart from polyphenols, herb of this species also contains steroids, triterpenes and fatty acids.
Objective: The aim of this study was to determine the content of campesterol, β-sitosterol and stigmasterol in C. angustifolium genotypes cultivated in vitro.
Methods: Plants grown in vitro and the plants harvested from field were subjected to the HPLC-DAD analysis.
Results: The investigated genotypes differed in sterol content. Stigmasterol (375.64–577.77 mg/100 g of dry weight – DW) was a predominant compound among the tested sterols. In contrast to in vitro cultures, plants harvested from field synthesized mainly β-sitosterol (103.05 mg/100 g DW), whereas campesterol and stigmasterol were less abundant.
Conclusions:
C. angustifolium in vitro cultures are rich source of phytosterols, particularly stigmasterol. Genotype had a significant effect on phytosterol accumulation under in vitro conditions.
Collapse
|
6
|
Nowak A, Zielonka-Brzezicka J, Perużyńska M, Klimowicz A. Epilobium angustifolium L. as a Potential Herbal Component of Topical Products for Skin Care and Treatment-A Review. Molecules 2022; 27:3536. [PMID: 35684473 PMCID: PMC9182203 DOI: 10.3390/molecules27113536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Epilobium angustifolium L. (EA) has been used as a topical agent since ancient times. There has been an increasing interest in applying EA as a raw material used topically in recent years. However, in the literature, there are not many reports on the comprehensive application of this plant to skin care and treatment. EA contains many valuable secondary metabolites, which determine antioxidant, anti-inflammatory, anti-aging, and antiproliferative activity effects. One of the most important active compounds found in EA is oenothein B (OeB), which increases the level of ROS and protects cells from oxidative damage. OeB also influences wound healing and reduces inflammation by strongly inhibiting hyaluronidase enzymes and inhibiting COX-1 and COX-2 cyclooxygenases. Other compounds that play a key role in the context of application to the skin are flavonoids, which inhibit collagenase and hyaluronidase enzymes, showing anti-aging and anti-inflammatory properties. While terpenes in EA play an important role in fighting bacterial skin infections, causing, among other things cell membrane, permeability increase as well as the modification of the lipid profiles and the alteration of the adhesion of the pathogen to the animal cells. The available scientific information on the biological potential of natural compounds can be the basis for the wider use of EA in skin care and treatment. The aim of the article is to review the existing literature on the dermocosmetic use of E. angustifolium.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| | - Joanna Zielonka-Brzezicka
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland;
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (J.Z.-B.); (A.K.)
| |
Collapse
|
7
|
Csikós E, Horváth A, Ács K, Papp N, Balázs VL, Dolenc MS, Kenda M, Kočevar Glavač N, Nagy M, Protti M, Mercolini L, Horváth G, Farkas Á, on behalf of the OEMONOM. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules 2021; 26:7141. [PMID: 34885733 PMCID: PMC8659259 DOI: 10.3390/molecules26237141] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/08/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common urinary diseases affecting men, generally after the age of 50. The prevalence of this multifactorial disease increases with age. With aging, the plasma level of testosterone decreases, as well as the testosterone/estrogen ratio, resulting in increased estrogen activity, which may facilitate the hyperplasia of the prostate cells. Another theory focuses on dihydrotestosterone (DHT) and the activity of the enzyme 5α-reductase, which converts testosterone to DHT. In older men, the activity of this enzyme increases, leading to a decreased testosterone/DHT ratio. DHT may promote prostate cell growth, resulting in hyperplasia. Some medicinal plants and their compounds act by modulating this enzyme, and have the above-mentioned targets. This review focuses on herbal drugs that are most widely used in the treatment of BPH, including pumpkin seed, willow herb, tomato, maritime pine bark, Pygeum africanum bark, rye pollen, saw palmetto fruit, and nettle root, highlighting the latest results of preclinical and clinical studies, as well as safety issues. In addition, the pharmaceutical care and other therapeutic options of BPH, including pharmacotherapy and surgical options, are discussed, summarizing and comparing the advantages and disadvantages of each therapy.
Collapse
Affiliation(s)
- Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Adrienn Horváth
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| | - Kamilla Ács
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Nóra Papp
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Viktória Lilla Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (M.S.D.); (M.K.)
| | - Maša Kenda
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (M.S.D.); (M.K.)
| | - Nina Kočevar Glavač
- University of Ljubljana, Department of Pharmaceutical Biology, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia;
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, SK-832-32 Bratislava, Slovakia;
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.P.); (L.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.P.); (L.M.)
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | | |
Collapse
|
8
|
Kowalczyk D, Szymanowska U, Skrzypek T, Basiura-Cembala M, Materska M, Łupina K. Corn starch and methylcellulose edible films incorporated with fireweed (Chamaenerion angustifolium L.) extract: Comparison of physicochemical and antioxidant properties. Int J Biol Macromol 2021; 190:969-977. [PMID: 34537300 DOI: 10.1016/j.ijbiomac.2021.09.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
The properties of edible films derived from corn starch (CS) and methylcellulose (MC) supplemented with fireweed extract (FE; 0.0125-0.05% w/w) were analyzed. Due to their more crystalline structure, the MC films were significantly stronger (~26 MPa) than the CS films (~4 MPa). In turn, CS produced films with lower water vapor permeability (WVP, 50.12-51.74 vs. 56.52-59.10 g mm m-2 d-1 kPa-1). The hydrothermally-disrupted starch granules contributed to high roughness and opacity of the CS films. The FE-supplemented films exhibited an intensive yellow color and improved the UV-absorbing effect. FE delayed starch retrogradation, as indicated by the reduced crystallinity and slightly improved transparency of the CS films. Incorporation of FE significantly enhanced the released radical scavenging activity (RSA) of the films, while did not affect the WVP and mechanical properties. Due to better FE-trapping capacity, the CS-based films exhibited lower antioxidant activity (RSA60min = 2.21-19.75%) as compared to the MC counterparts (RSA60min = 4.87-38.31%).
Collapse
Affiliation(s)
- Dariusz Kowalczyk
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Urszula Szymanowska
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Tomasz Skrzypek
- Laboratory of Confocal and Electron Microscopy, Centre for Interdisciplinary Research, Faculty of Science and Health, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Monika Basiura-Cembala
- Institute of Textile Engineering and Polymer Materials, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
| | - Małgorzata Materska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Katarzyna Łupina
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
9
|
Evolution of the anticholinesterase, antioxidant, and anti-inflammatory activity of Epilobium angustifolium L. infusion during in vitro digestion. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104645] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Nowak A, Ossowicz-Rupniewska P, Rakoczy R, Konopacki M, Perużyńska M, Droździk M, Makuch E, Duchnik W, Kucharski Ł, Wenelska K, Klimowicz A. Bacterial Cellulose Membrane Containing Epilobium angustifolium L. Extract as a Promising Material for the Topical Delivery of Antioxidants to the Skin. Int J Mol Sci 2021; 22:6269. [PMID: 34200927 PMCID: PMC8230535 DOI: 10.3390/ijms22126269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, In Vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.)
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (M.P.); (M.D.)
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (M.P.); (M.D.)
| | - Edyta Makuch
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Karolina Wenelska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland;
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| |
Collapse
|
11
|
Two new C-glycosidic ellagitannins and accompanying tannins from Lawsonia inermis leaves and their cytotoxic effects. Fitoterapia 2021; 153:104925. [PMID: 33984438 DOI: 10.1016/j.fitote.2021.104925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Investigation on tannins having antitumor properties led to the isolation of two new C-glycosidic ellagitannins (1 and 2) along with seven known ellagitannins (3-9) and a related polyphenolic constituent (10) from Lawsonia inermis leaves. Our intensive HRESIMS, 1D and 2D NMR, and ECD spectroscopic studies of new tannins have shown that one (1) has a monomer structure of C-glycosidic tannin, and the other (2) has a dimeric structure of 2,3-O-hexahydroxydiphenoyl glucopyranose and a C-glycosidic tannin. Among the known compounds, one (3) is a C-glycosidic tannin that was isolated first of all from nature, five were C-glycosidic tannins, vescalagin (4), 1-O-methylvescalagin (5), castalagin (6), stachyurin (7), and casuarinin (8), and one was an O-glycosidic ellagitannin, tellimagrandin II (9). The remaining phenolic constituent from the leaves was identified as valoneic acid dilactone (10). The ellagitannins 1, and 3-9 demonstrated noticeable cytotoxicity on human oral squamous cell carcinoma cell lines (HSC-2, HSC-4, and Ca9-22), and lower effects on human oral normal cells (HGF, HPC, and HPLF). Tellimagrandin II (9) had the highest tumor-specific cytotoxicity, and also cleaved poly (ADP-ribose) polymerase 1 in HSC-2 cells. These findings showed that L. inermis ellagitannins may be a candidate for the production of anti-oral cancer materials.
Collapse
|