1
|
Han JH, Weir AM, Weston JF, Heuer C, Gates MC. Elimination of bovine viral diarrhoea virus in New Zealand: a review of research progress and future directions. N Z Vet J 2018; 66:273-280. [PMID: 30091684 DOI: 10.1080/00480169.2018.1509030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The major impacts of bovine viral diarrhoea (BVD) on cattle health and production have prompted many countries to embark on national elimination programmes. These programmes typically involve identifying and removing persistently infected (PI) cattle in infected herds and implementing biosecurity measures, such as pre- or post-movement testing. In order to design a systematic national control programme to eliminate BVD in New Zealand, which achieves the greatest benefits to the industries at the lowest cost to individual farmers, an accurate understanding is necessary of the epidemiology, economics and social motivation for BVD control in New Zealand. In this article we briefly review the pathogenesis of BVD, transmission and diagnosis of BVD virus infection, and effectiveness of vaccination. We summarise the current state of knowledge of the prevalence, risk factors for transmission, and financial impacts of BVD in New Zealand. We describe control programmes in Europe and then discuss the challenges that must be addressed to design a cost-effective national control programme to eliminate BVD in New Zealand.
Collapse
Affiliation(s)
- J-H Han
- a EpiCentre, School of Veterinary Science, Massey University , Private Bag 11-222, Palmerston North , New Zealand
| | - A M Weir
- b Eltham District Veterinary Services , PO Box 24, Eltham , New Zealand
| | - J F Weston
- c School of Veterinary Science, Massey University , Private Bag 11-222, Palmerston North , New Zealand
| | - C Heuer
- a EpiCentre, School of Veterinary Science, Massey University , Private Bag 11-222, Palmerston North , New Zealand
| | - M C Gates
- a EpiCentre, School of Veterinary Science, Massey University , Private Bag 11-222, Palmerston North , New Zealand
| |
Collapse
|
2
|
Tao J, Li B, Chen J, Zhang C, Ma Y, Zhu G, Liu H. N pro His49 and E rns Lys412 mutations in pig bovine viral diarrhea virus type 2 synergistically enhance the cellular antiviral response. Virus Genes 2017; 54:57-66. [PMID: 28852929 DOI: 10.1007/s11262-017-1506-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Abstract
Type I interferons are major components of the innate immune response of hosts, and accordingly, many viruses have evolved mechanisms to modulate the host response during infection. Bovine viral diarrhea virus (BVDV) nonstructural protein Npro and structural protein Erns play important roles in inhibiting type I interferon. The aim of this study was to explore the epistatic effects of amino acid mutations in Npro and Erns in porcine ST cells to characterize the immune response induced by BVDV-2. Plasmids with mutant amino acids His49 (H49), Glu22 (E22) in Npro, and His300 (H300), Lys412 (K412) in Erns which had been changed to Alanine (A) had similar effects on type I interferon production in MDBK and ST cells, but resulted in much greater ISG15, OAS, and Mx production in ST cells. The rescued vASH/NproH49ErnsK412 virus showed the best efficiency with respect to modulating antiviral cytokines, indicating that the amino acids Npro H49 and Erns K412 had highly synergistic effects in abolishing the ability to inhibit type I interferon. These findings have importance practical implications owing to the increasing prevalence of BVDV infections, including persistent infections, in domestic pigs.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Jinghua Chen
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Chunling Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Yufei Ma
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China. .,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China.
| |
Collapse
|
3
|
Abstract
The control and prevention of bovine viral diarrhea virus (BVDV) infections has provided substantial challenges. Viral genetic variation, persistent infections, and viral tropism for immune cells have complicated disease control strategies. Vaccination has, however, provided an effective tool to prevent acute systemic infections and increase reproductive efficiency through fetal protection. There has been substantial controversy about the safety and efficacy of BVDV vaccines, especially when comparing killed versus modified-live viral (MLV) vaccines. Furthermore, numerous vaccination protocols have been proposed to protect the fetus and ensure maternal antibody transfer to the calf. These issues have been further complicated by reports of immune suppression during natural infections and following vaccination. While killed BVDV vaccines provide the greatest safety, their limited immunogenicity makes multiple vaccinations necessary. In contrast, MLV BVDV vaccines induce a broader range of immune responses with a longer duration of immunity, but require strategic vaccination to minimize potential risks. Vaccination strategies for breeding females and young calves, in the face of maternal antibody, are discussed. With intranasal vaccination of young calves it is possible to avoid maternal antibody interference and induce immune memory that persists for 6-8 months. Thus, with an integrated vaccination protocol for both breeding cows and calves it is possible to maximize disease protection while minimizing vaccine risks.
Collapse
|
4
|
Newcomer BW, Walz PH, Givens MD, Wilson AE. Efficacy of bovine viral diarrhea virus vaccination to prevent reproductive disease: A meta-analysis. Theriogenology 2015; 83:360-365.e1. [DOI: 10.1016/j.theriogenology.2014.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|