A Durable and Self-Cleaning Superhydrophobic Surface Prepared by Precipitating Flower-Like Crystals on a Glass-Ceramic Surface.
MATERIALS 2020;
13:ma13071642. [PMID:
32252273 PMCID:
PMC7178295 DOI:
10.3390/ma13071642]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/24/2022]
Abstract
Herein, a superhydrophobic surface with superior durability was fabricated on a glass-ceramic surface by crystallization, hydrofluoric acid (HF) etching, and surface grafting. The as-prepared glass-ceramic surface was composed of three-dimensional flower-like micro-clusters, which were self-assembled from numerous nanosheets. Such a dual-scale rough surface exhibited superhydrophobicity, with a water contact angle (WCA) of 170.3° ± 0.1° and a sliding angle (SA) of ~2° after grafting with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (FAS-17). This can be attributed to the synergistic effect between the dual-scale structure and surface chemistry. Furthermore, this surface exhibited excellent self-cleaning properties, stability against strong acid and strong alkali corrosion, and anti-stripping properties.
Collapse