1
|
Keremidarska-Markova M, Sazdova I, Ilieva B, Mishonova M, Shkodrova M, Hristova-Panusheva K, Krasteva N, Chichova M. Comprehensive Assessment of Graphene Oxide Nanoparticles: Effects on Liver Enzymes and Cardiovascular System in Animal Models and Skeletal Muscle Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:188. [PMID: 38251152 PMCID: PMC10818754 DOI: 10.3390/nano14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The growing interest in graphene oxide (GO) for different biomedical applications requires thoroughly examining its safety. Therefore, there is an urgent need for reliable data on how GO nanoparticles affect healthy cells and organs. In the current work, we adopted a comprehensive approach to assess the influence of GO and its polyethylene glycol-modified form (GO-PEG) under near-infrared (NIR) exposure on several biological aspects. We evaluated the contractility of isolated frog hearts, the activity of two rat liver enzymes-mitochondrial ATPase and diamine oxidase (DAO), and the production of reactive oxygen species (ROS) in C2C12 skeletal muscle cells following direct exposure to GO nanoparticles. The aim was to study the influence of GO nanoparticles at multiple levels-organ; cellular; and subcellular-to provide a broader understanding of their effects. Our data demonstrated that GO and GO-PEG negatively affect heart contractility in frogs, inducing stronger arrhythmic contractions. They increased ROS production in C2C12 myoblasts, whose effects diminished after NIR irradiation. Both nanoparticles in the rat liver significantly stimulated DAO activity, with amplification of this effect after NIR irradiation. GO did not uncouple intact rat liver mitochondria but caused a concentration-dependent decline in ATPase activity in freeze/thaw mitochondria. This multifaceted investigation provides crucial insights into GOs potential for diverse implications in biological systems.
Collapse
Affiliation(s)
- Milena Keremidarska-Markova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Iliyana Sazdova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Bilyana Ilieva
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Milena Mishonova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Milena Shkodrova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Mariela Chichova
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (M.K.-M.); (I.S.); (B.I.); (M.M.); (M.S.)
| |
Collapse
|
2
|
Chichova M, Tasinov O, Shkodrova M, Mishonova M, Sazdova I, Ilieva B, Doncheva-Stoimenova D, Kiselova-Kaneva Y, Raikova N, Uzunov B, Ivanova D, Gagov H. New Data on Cylindrospermopsin Toxicity. Toxins (Basel) 2021; 13:toxins13010041. [PMID: 33429940 PMCID: PMC7827247 DOI: 10.3390/toxins13010041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Cylindrospermopsin (CYN) is a widely spread cyanotoxin that can occur in fresh water and food. This research aims to investigate CYN toxicity by studying the effects of drinking 0.25 nM of CYN-contaminated water from a natural source, and of the direct application of moderate concentrations of CYN on different animal targets. The chosen structures and activities are rat mitochondria inner membrane permeability, mitochondrial ATP synthase (ATPase) and rat liver diamine oxidase (DAO) activities (EC 1.4.3.22.), the force of the contraction of an excised frog heart preparation with functional innervation, and the viability of a human intestinal epithelial cell line (HIEC-6). The oral exposure to CYN decreased the reverse (hydrolase) activity of rat liver ATPase whereas its short-term, in vitro application was without significant effect on this organelle, DAO activity, heart contractions, and their neuronal regulation. The application of CYN reduced HIEC-6 cells’ viability dose dependently. It was concluded that CYN is moderately toxic for the human intestinal epithelial cells, where the regeneration of the epithelial layer can be suppressed by CYN. This result suggests that CYN may provoke pathological changes in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Mariela Chichova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (M.C.); (M.S.); (M.M.); (I.S.); (B.I.); (D.D.-S.); (N.R.)
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov, 9002 Varna, Bulgaria; (O.T.); (Y.K.-K.); (D.I.)
| | - Milena Shkodrova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (M.C.); (M.S.); (M.M.); (I.S.); (B.I.); (D.D.-S.); (N.R.)
| | - Milena Mishonova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (M.C.); (M.S.); (M.M.); (I.S.); (B.I.); (D.D.-S.); (N.R.)
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (M.C.); (M.S.); (M.M.); (I.S.); (B.I.); (D.D.-S.); (N.R.)
| | - Bilyana Ilieva
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (M.C.); (M.S.); (M.M.); (I.S.); (B.I.); (D.D.-S.); (N.R.)
| | - Dilyana Doncheva-Stoimenova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (M.C.); (M.S.); (M.M.); (I.S.); (B.I.); (D.D.-S.); (N.R.)
| | - Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov, 9002 Varna, Bulgaria; (O.T.); (Y.K.-K.); (D.I.)
| | - Neli Raikova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (M.C.); (M.S.); (M.M.); (I.S.); (B.I.); (D.D.-S.); (N.R.)
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria;
| | - Diana Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov, 9002 Varna, Bulgaria; (O.T.); (Y.K.-K.); (D.I.)
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (M.C.); (M.S.); (M.M.); (I.S.); (B.I.); (D.D.-S.); (N.R.)
- Correspondence:
| |
Collapse
|
3
|
Su XJ, Dong RX, Li YP, Yang SG, Li ZF. Obestatin and cardiovascular health. Peptides 2014; 52:58-60. [PMID: 24333655 DOI: 10.1016/j.peptides.2013.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Obestatin, encoded by the same gene as ghrelin, was first described as a physiological opponent of ghrelin through an interaction with the orphan receptor GPR39. However, the effects of obestatin were not totally contrary to the effects of ghrelin in cardiovascular regulations based on the recent studies. We summarize here the current evidences surrounding the cardiovascular actions of obestatin, and the possible implications of obestatin as a therapeutic agent in common conditions such as hypertension and heart failure.
Collapse
Affiliation(s)
- Xue-Jia Su
- Department of Thoracic Surgery, No. 88 Hospital of PLA, Tai'an City, Shandong Province 271000, China
| | - Rui-Xin Dong
- Department of Cardiology, No. 88 Hospital of PLA, Tai'an City, Shandong Province 271000, China
| | - Yan-Peng Li
- Department of Out-patient, No. 88 Hospital of PLA, Tai'an City, Shandong Province 271000, China
| | - Shu-Guang Yang
- Department of Cardiology, No. 88 Hospital of PLA, Tai'an City, Shandong Province 271000, China.
| | - Zhao-Feng Li
- Department of Cardiology, No. 88 Hospital of PLA, Tai'an City, Shandong Province 271000, China.
| |
Collapse
|
4
|
Agnew AJ, Robinson E, McVicar CM, Harvey AP, Ali IHA, Lindsay JE, McDonald DM, Green BD, Grieve DJ. The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling. Br J Pharmacol 2012; 166:327-38. [PMID: 22035179 DOI: 10.1111/j.1476-5381.2011.01761.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Obestatin is a recently discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. EXPERIMENTAL APPROACH Cumulative relaxation responses to obestatin peptides were assessed in rat isolated aorta and mesenteric artery (n≥ 8) in the presence and absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). KEY RESULTS Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, l-NAME (NOS inhibitor), high extracellular K(+) , GDP-β-S (G-protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked GPCR, PI3K/PKB, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and PKB phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarizing factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. CONCLUSIONS AND IMPLICATIONS Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterized by endothelial dysfunction and cardiovascular complications.
Collapse
Affiliation(s)
- Andrew J Agnew
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Seim I, Walpole C, Amorim L, Josh P, Herington A, Chopin L. The expanding roles of the ghrelin-gene derived peptide obestatin in health and disease. Mol Cell Endocrinol 2011; 340:111-7. [PMID: 21459124 DOI: 10.1016/j.mce.2011.03.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 01/18/2023]
Abstract
Obestatin is a 23 amino acid, ghrelin gene-derived peptide hormone produced in the stomach and a range of other tissues throughout the body. While it was initially reported that obestatin opposed the actions of ghrelin with regards to appetite and food intake, it is now clear that obestatin is not an endogenous ghrelin antagonist, but it is a multi-functional peptide hormone in its own right. In this review we will discuss the controversies associated with the discovery of obestatin and explore emerging central and peripheral roles of obestatin, which includes adipogenesis, pancreatic homeostasis and cancer.
Collapse
Affiliation(s)
- Inge Seim
- Queensland University of Technology, Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|