1
|
Lämmerhirt L, Kappelmann-Fenzl M, Fischer S, Meier P, Staebler S, Kuphal S, Bosserhoff AK. Loss of miR-101-3p in melanoma stabilizes genomic integrity, leading to cell death prevention. Cell Mol Biol Lett 2024; 29:29. [PMID: 38431560 PMCID: PMC10909299 DOI: 10.1186/s11658-024-00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Malignant melanoma remains the most lethal form of skin cancer, exhibiting poor prognosis after forming distant metastasis. Owing to their potential tumor-suppressive properties by regulating oncogenes and tumor suppressor genes, microRNAs are important player in melanoma development and progression. We defined the loss of miR-101-3p expression in melanoma cells compared with melanocytes and melanoblast-related cells as an early event in tumor development and aimed to understand the tumor suppressive role of miR-101-3p and its regulation of important cellular processes. Reexpression of miR-101-3p resulted in inhibition of proliferation, increase in DNA damage, and induction of apoptosis. We further determined the nuclear structure protein Lamin B1, which influences nuclear processes and heterochromatin structure, ATRX, CASP3, and PARP as an important direct target of miR-101-3p. RNA sequencing and differential gene expression analysis after miR-101-3p reexpression supported our findings and the importance of loss of mir-101-3p for melanoma progression. The validated functional effects are related to genomic instability, as recent studies suggest miRNAs plays a key role in mediating this cellular process. Therefore, we concluded that miR-101-3p reexpression increases the genomic instability, leading to irreversible DNA damage, which leads to apoptosis induction. Our findings suggest that the loss of miR-101-3p in melanoma serves as an early event in melanoma progression by influencing the genomic integrity to maintain the increased bioenergetic demand.
Collapse
Affiliation(s)
- Lisa Lämmerhirt
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Paula Meier
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Julius-Maximilians-University Würzburg (JMU), Sanderring 2, 97070, Würzburg, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany.
| |
Collapse
|
2
|
Khot M, Sreekumar D, Jahagirdar S, Kulkarni A, Hari K, Faseela EE, Sabarinathan R, Jolly MK, Sengupta K. Twist1 induces chromosomal instability (CIN) in colorectal cancer cells. Hum Mol Genet 2020; 29:1673-1688. [PMID: 32337580 PMCID: PMC7322571 DOI: 10.1093/hmg/ddaa076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Twist1 is a basic helix-loop-helix transcription factor, essential during early development in mammals. While Twist1 induces epithelial-to-mesenchymal transition (EMT), here we show that Twist1 overexpression enhances nuclear and mitotic aberrations. This is accompanied by an increase in whole chromosomal copy number gains and losses, underscoring the role of Twist1 in inducing chromosomal instability (CIN) in colorectal cancer cells. Array comparative genomic hybridization (array CGH) analysis further shows sub-chromosomal deletions, consistent with an increased frequency of DNA double strand breaks (DSBs). Remarkably, Twist1 overexpression downmodulates key cell cycle checkpoint factors-Bub1, BubR1, Mad1 and Mad2-that regulate CIN. Mathematical simulations using the RACIPE tool show a negative correlation of Twist1 with E-cadherin and BubR1. Data analyses of gene expression profiles of patient samples from The Cancer Genome Atlas (TCGA) reveal a positive correlation between Twist1 and mesenchymal genes across cancers, whereas the correlation of TWIST1 with CIN and DSB genes is cancer subtype-specific. Taken together, these studies highlight the mechanistic involvement of Twist1 in the deregulation of factors that maintain genome stability during EMT in colorectal cancer cells. Twist1 overexpression enhances genome instability in the context of EMT that further contributes to cellular heterogeneity. In addition, these studies imply that Twist1 downmodulates nuclear lamins that further alter spatiotemporal organization of the cancer genome and epigenome. Notwithstanding their genetic background, colorectal cancer cells nevertheless maintain their overall ploidy, while the downstream effects of Twist1 enhance CIN and DNA damage enriching for sub-populations of aggressive cancer cells.
Collapse
Affiliation(s)
- Maithilee Khot
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Dyuthi Sreekumar
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sanika Jahagirdar
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Apoorva Kulkarni
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Kundan Sengupta
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
- To whom correspondence should be addressed at: B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India. Tel: +91 20 25908071; Fax: +91-20-20251566;
| |
Collapse
|
3
|
Guardiola C, Prezado Y, Roulin C, Bergs JW. Effect of X-ray minibeam radiation therapy on clonogenic survival of glioma cells. Clin Transl Radiat Oncol 2018; 13:7-13. [PMID: 30211325 PMCID: PMC6134191 DOI: 10.1016/j.ctro.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
The goal is to compare, in vitro, the efficiency of minibeam radiotherapy (MBRT) and standard RT in inducing clonogenic cell death in glioma cell lines. With this aim, we report on the first in vitro study performed in an X-ray Small Animal Radiation Research Platform (SARRP) modified for minibeam irradiations. F98 rat and U87 human glioma cells were irradiated with either an array of minibeams (MB) or with conventional homogeneous beams (broad beam, BB). A specially designed multislit collimator was used to generate the minibeams with a with of a center-to-center distance of 1465 (±10) μm, and a PVDR value of 12.4 (±2.3) measured at 1 cm depth in a water phantom. Cells were either replated for clonogenic assay directly (immediate plating, IP) or 24 h after irradiation (delayed plating, DP) to assess the effect of potentially lethal damage repair (PLDR) on cell survival. Our hypothesis is that with MBRT, a similar level of clonogenic cell death can be reached compared to standard RT, when using equal mean radiation doses. To prove this, we performed dose escalations to determine the minimum integrated dose needed to reach a similar level of clonogenic cell death for both treatments. We show that this minimum dose can vary per cell line: in F98 cells a dose of 19 Gy was needed to obtain similar levels of clonogenic survival, whereas in U87 cells there was still a slightly increased survival with MB compared to BB 19 Gy treatment. The results suggest also an impairment of DNA damage repair in F98 cells as there is no difference in clonogenic cell survival between immediately and delayed plated cells for each dose and irradiation mode. For U87 cells, a small IP-DP effect was observed in the case of BB irradiation up to a dose of 17 Gy. However, at 19 Gy BB, as well as for the complete dose range of MB irradiation, U87 cells did not show a difference in clonogenic survival between IP and DP. We therefore speculate that MBRT might influence PLDR. The current results show that X-ray MBRT is a promising method for treatment of gliomas: future preclinical and clinical studies should aim at reaching a minimum radiation (valley) dose for effective eradication of gliomas with increased sparing of normal tissues compared to standard RT.
Collapse
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Christophe Roulin
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | - Judith W.J. Bergs
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| |
Collapse
|
4
|
Tsai CL, Liu WL, Hsu FM, Yang PS, Yen RF, Tzen KY, Cheng AL, Chen PJ, Cheng JCH. Targeting histone deacetylase 4/ubiquitin-conjugating enzyme 9 impairs DNA repair for radiosensitization of hepatocellular carcinoma cells in mice. Hepatology 2018. [PMID: 28646552 DOI: 10.1002/hep.29328] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several strategies to improve the efficacy of radiation therapy against hepatocellular carcinoma (HCC) have been investigated. One approach is to develop radiosensitizing compounds. Because histone deacetylase 4 (HDAC4) is highly expressed in liver cancer and known to regulate oncogenesis through chromatin structure remodeling and controlling protein access to DNA, we postulated that HDAC4 inhibition might enhance radiation's effect on HCC cells. HCC cell lines (Huh7 and PLC5) and an ectopic xenograft were pretreated with HDAC inhibitor or short hairpin RNA to knock down expression of HDAC4 and then irradiated (2.5-10.0 Gy). We evaluated cell survival by a clonogenic assay; apoptosis by Annexin V immunofluorescence; γH2AX, Rad51, and HDAC4 by immunofluorescence staining; HDAC4, Rad51, and ubiquitin-conjugating enzyme 9 (Ubc9) in HCC cell nuclei by cell fractionation and confocal microscopy; physical interaction between HDAC4/Rad51/Ubc9 by immunoprecipitation; and the downstream targets of HDAC4 knockdown by immunoblotting. Both HDAC4 knockdown and HDAC inhibitor enhanced radiation-induced cell death and reduced homologous recombination repair of DNA double-strand breaks and protein kinase B activation, leading to increased apoptosis. HDAC4 knockdown with or without an HDAC inhibitor significantly delayed tumor growth in a radiation-treated xenograft model. Radiation stimulated nuclear translocation of Rad51 in an HDAC4-dependent manner and the binding of Ubc9 directly to HDAC4, which led to Ubc9 acetylation. Moreover, these effects were accompanied by HDAC4/Ubc9/Rad51 complex dissociation through inhibiting nuclear translocation. Conclusion: HDAC4 signaling blockade enhances radiation-induced lethality in HCC cells and xenografts. These findings raise the possibility that HDAC4/Ubc9/Rad51 complex in DNA repair may be a target for radiosensitization of HCC. (Hepatology 2018;67:586-599).
Collapse
Affiliation(s)
- Chiao-Ling Tsai
- Graduate Institutes of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Lin Liu
- Graduate Institutes of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Ming Hsu
- Graduate Institutes of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Kai-Yuan Tzen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ann-Lii Cheng
- Graduate Institutes of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institutes of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Graduate Institutes of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institutes of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Sorokin M, Kholodenko R, Grekhova A, Suntsova M, Pustovalova M, Vorobyeva N, Kholodenko I, Malakhova G, Garazha A, Nedoluzhko A, Vasilov R, Poddubskaya E, Kovalchuk O, Adamyan L, Prassolov V, Allina D, Kuzmin D, Ignatev K, Osipov A, Buzdin A. Acquired resistance to tyrosine kinase inhibitors may be linked with the decreased sensitivity to X-ray irradiation. Oncotarget 2017; 9:5111-5124. [PMID: 29435166 PMCID: PMC5797037 DOI: 10.18632/oncotarget.23700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/11/2017] [Indexed: 01/08/2023] Open
Abstract
Acquired resistance to chemotherapy and radiation therapy is one of the major obstacles decreasing efficiency of treatment of the oncologic diseases. In this study, on the two cell lines (ovarian carcinoma SKOV-3 and neuroblastoma NGP-127), we modeled acquired resistance to five target anticancer drugs. The cells were grown on gradually increasing concentrations of the clinically relevant tyrosine kinase inhibitors (TKIs) Sorafenib, Pazopanib and Sunitinib, and rapalogs Everolimus and Temsirolimus, for 20 weeks. After 20 weeks of culturing, the half-inhibitory concentrations (IC50) increased by 25 – 186% for the particular combinations of the drugs and cell types. We next subjected cells to 10 Gy irradiation, a dose frequently used in clinical radiation therapy. For the SKOV-3, but not NGP-127 cells, for the TKIs Sorafenib, Pazopanib and Sunitinib, we noticed statistically significant increase in capacity to repair radiation-induced DNA double strand breaks compared to naïve control cells not previously treated with TKIs. These peculiarities were linked with the increased activation of ATM DNA repair pathway in the TKI-treated SKOV-3, but not NGP-127 cells. Our results provide a new cell culture model for studying anti-cancer therapy efficiency and evidence that there may be a tissue-specific radioresistance emerging as a side effect of treatment with TKIs.
Collapse
Affiliation(s)
- Maxim Sorokin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Roman Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anna Grekhova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Maria Suntsova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Margarita Pustovalova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Natalia Vorobyeva
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Irina Kholodenko
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Galina Malakhova
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,OmicsWay Corp., Walnut, CA 91789, USA
| | - Artem Nedoluzhko
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia
| | - Raif Vasilov
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Leila Adamyan
- Department of Reproductive Medicine and Surgery, Moscow State University of Medicine and Dentistry, Moscow 127206, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daria Allina
- Pathology Department, Morozov Children's City Hospital, Moscow 119049, Russia
| | | | - Kirill Ignatev
- Republic Oncological Hospital, Petrozavodsk 185000, Russia
| | - Andreyan Osipov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Anton Buzdin
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,OmicsWay Corp., Walnut, CA 91789, USA
| |
Collapse
|
6
|
Walter RFH, Vollbrecht C, Werner R, Mairinger T, Schmeller J, Flom E, Wohlschlaeger J, Barbetakis N, Paliouras D, Chatzinikolaou F, Adamidis V, Tsakiridis K, Zarogoulidis P, Trakada G, Christoph DC, Schmid KW, Mairinger FD. Screening of Pleural Mesotheliomas for DNA-damage Repair Players by Digital Gene Expression Analysis Can Enhance Clinical Management of Patients Receiving Platin-Based Chemotherapy. J Cancer 2016; 7:1915-1925. [PMID: 27698933 PMCID: PMC5039377 DOI: 10.7150/jca.16390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/14/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and biologically highly aggressive tumour leading to a dismal prognosis. Multimodality therapy consisting of platinum-based chemotherapy is the treatment of choice. The reasons for the rather poor efficacy of platinum compounds remain largely unknown. Material and Methods: For this exploratory mRNA study, 24 FFPE tumour specimens were screened by digital gene expression analysis. Based on data from preliminary experiments and recent literature, a total of 366 mRNAs were investigated using a Custom CodeSet from NanoString. All statistical analyses were calculated with the R i386 statistical programming environment. Results: CDC25A and PARP1 gene expression were correlated with lymph node spread, BRCA1 and TP73 expression levels with higher IMIG stage. NTHL1 and XRCC3 expression was associated with TNM stage. CHECK1 as well as XRCC2 expression levels were correlated with tumour progression in the overall cohort of patients. CDKN2A and MLH1 gene expression influenced overall survival in this collective. In the adjuvant treated cohort only, CDKN2A, CHEK1 as well as ERCC1 were significantly associated with overall survival. Furthermore, TP73 expression was associated with progression in this subgroup. Conclusion: DNA-damage response plays a crucial role in response to platin-based chemotherapeutic regimes. In particular, CHEK1, XRCC2 and TP73 are strongly associated with tumour progression. ERCC1, MLH1, CDKN2A and most promising CHEK1 are prognostic markers for OS in MPM. TP73, CDKN2A, CHEK1 and ERCC1 seem to be also predictive markers in adjuvant treated MPMs. After a prospective validation, these markers may improve clinical and pathological practice, finally leading to a patients' benefit by an enhanced clinical management.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;; Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Claudia Vollbrecht
- Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| | - Robert Werner
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin Germany
| | - Thomas Mairinger
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elena Flom
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;; Institute of Pathology, Ev.-Luth. Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - Nikolaos Barbetakis
- Thoracic Surgery Department, Theagenio Cancer Hospital, Thessaloniki, Greece
| | - Dimitrios Paliouras
- Thoracic Surgery Department, Theagenio Cancer Hospital, Thessaloniki, Greece
| | | | - Vasilis Adamidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kosmas Tsakiridis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Trakada
- Division of Pulmonology, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | | | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
7
|
Jin Y, Ai J, Shi J. Lung microenvironment promotes the metastasis of human hepatocellular carcinoma cells to the lungs. Int J Clin Exp Med 2015; 8:9911-9917. [PMID: 26309675 PMCID: PMC4538034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Cancer metastasis is a highly tissue-specific and organ-selective process. It has been shown that the affected tissues and/or organs play a major role in this complex process. The lung is the most common target organ of extrahepatic hepatocellular carcinoma (HCC) metastasis, but the precise molecular mechanism underlying this organ-specific metastasis remains unclear. We hypothesized that lung microenvironment was able to promote the metastasis of HCC cells to the lungs leading to distant metastases. In support of our hypothesis, we provided evidence from targeted metastasis in various types of cancer and contributing factors in the microenvironment of targeted tissues/organs. A better understanding of the steps involved in the interplay between HCC cells and lung microenvironment may offer new perspectives for the medical management of lung metastases of HCC.
Collapse
Affiliation(s)
- Yun Jin
- Department of Hepatobiliary Surgery, Kunming General Hospital of Chengdu Military CommandPLA, Kuming 650032, Yunnan, China
| | - Junhua Ai
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
8
|
MiR-101 induces senescence and prevents apoptosis in the background of DNA damage in MCF7 cells. PLoS One 2014; 9:e111177. [PMID: 25353636 PMCID: PMC4213038 DOI: 10.1371/journal.pone.0111177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022] Open
Abstract
Moderately increased DNA damage due to the exogenous miR-101 (4 fold) over-expression in MCF7 cells was substantiated by an increase in the number of γ-H2AX foci, correlating with a simple-to-do Halo-assay. miR-101 induced mild/moderate DNA damage favoured senescence rather than apoptosis. An experimental support emanated from the induced mild/moderate DNA damage with 1 µM/5 µM etoposide in MCF7 cells, which resulted in an endogenous miR-101 over-expression (10/4 fold, respectively), followed by senescence. On the other hand, the severe DNA damage induced with 10 µM etoposide, resulted in a low (<1 fold) endogenous expression of miR-101 and an elevated percentage of apoptotic cells. Using bioinformatics tools along with in-vitro and in-vivo validations, miR-101 was found to target and downregulate the mRNA expression of UBE2N and SMARCA4, involved in DNA damage repair (DDR) pathways. Recovery of the expression of the two novel targets in anti-miR-101 transfection validated the results. We conclude that a threshold range of over-expressed miR-101, capable of inducing mild/moderate DNA damage, is sensed by cells to become senescent. The observation derives further support from in-silico protein-protein network analysis where the two novel targets showed their involvement in senescence pathway.
Collapse
|
9
|
Radiation oncology in vitro: trends to improve radiotherapy through molecular targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461687. [PMID: 25302298 PMCID: PMC4180203 DOI: 10.1155/2014/461687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022]
Abstract
Much has been investigated to improve the beneficial effects of radiotherapy especially in that case where radioresistant behavior is observed. Beyond simple identification of resistant phenotype the discovery and development of specific molecular targets have demonstrated therapeutic potential in cancer treatment including radiotherapy. Alterations on transduction signaling pathway related with MAPK cascade are the main axis in cancer cellular proliferation even as cell migration and invasiveness in irradiated tumor cell lines; then, for that reason, more studies are in course focusing on, among others, DNA damage enhancement, apoptosis stimulation, and growth factors receptor blockages, showing promising in vitro results highlighting molecular targets associated with ionizing radiation as a new radiotherapy strategy to improve clinical outcome. In this review we discuss some of the main molecular targets related with tumor cell proliferation and migration as well as their potential contributions to radiation oncology improvements.
Collapse
|