1
|
Sharma N, Radha, Kumar M, Kumari N, Puri S, Rais N, Natta S, Dhumal S, Navamaniraj N, Chandran D, Mohankumar P, Muthukumar M, Senapathy M, Deshmukh V, Damale RD, Anitha T, Balamurugan V, Sathish G, Lorenzo JM. Phytochemicals, therapeutic benefits and applications of chrysanthemum flower: A review. Heliyon 2023; 9:e20232. [PMID: 37860517 PMCID: PMC10582400 DOI: 10.1016/j.heliyon.2023.e20232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
Chrysanthemum is a flowering plant belonging to a genus of the dicotyledonous herbaceous annual flowering plant of the Asteraceae (Compositae) family. It is a perpetual flowering plant, mostly cultivated for medicinal purposes; generally, used in popular drinks due to its aroma and flavor. It is primarily cultivated in China, Japan, Europe, and United States. These flowers were extensively used in various healthcare systems and for treating various diseases. Chrysanthemum flowers are rich in phenolic compounds and exhibit strong properties including antioxidant, antimicrobial, anti-inflammatory, anticancer, anti-allergic, anti-obesity, immune regulation, hepatoprotective, and nephroprotective activities. The main aim of the present review was to investigate the nutritional profile, phytochemistry, and biological activities of flowers of different Chrysanthemum species. Also, a critical discussion of the diverse metabolites or bioactive constituents of the Chrysanthemum flowers is highlighted in the present review. Moreover, the flower extracts of Chrysanthemum have been assessed to possess a rich phytochemical profile, including compounds such as cyanidin-3-O-(6″-O-malonyl) glucoside, delphinidin 3-O-(6" -O-malonyl) glucoside-3', rutin, quercetin, isorhamnetin, rutinoside, and others. These profiles exhibit potential health benefits, leading to their utilization in the production of supplementary food products and pharmaceutical drugs within the industry. However, more comprehensive research studies/investigations are still needed to further discover the potential benefits for human and animal utilization.
Collapse
Affiliation(s)
- Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, 305004, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong, 737106, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Nelson Navamaniraj
- Seed Centre, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, Kerela, India
| | - Pran Mohankumar
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Muthamilselvan Muthukumar
- Department of Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu 603201, Tamil Nadu, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - Rahul D. Damale
- ICAR—National Research Centre on Pomegranate, Solapur 413255, Maharashtra, India
| | - T. Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - V. Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Madurai, India
| | - G. Sathish
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain
| |
Collapse
|
2
|
Ma W, Kang X, Liu P, She K, Zhang Y, Lin X, Li B, Chen Z. The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensis. HORTICULTURE RESEARCH 2022; 9:6498065. [PMID: 35031799 PMCID: PMC8788374 DOI: 10.1093/hr/uhab046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 05/19/2023]
Abstract
Caffeine is an important functional substance and is abundant in tea plant, but little is known about how its biosynthesis is regulated by transcription factors. In this study, the NAC-like transcription factor-encoding gene CsNAC7, which is involved in caffeine synthesis, was isolated from a Yinghong 9 cDNA library using a yeast one-hybrid assay; this gene comprises 1371 bp nucleotides and is predicted to encode 456 amino acids. The expression of CsNAC7 at the transcriptional level in tea shoots shared a similar pattern with that of the caffeine synthase gene yhNMT1 in the spring and summer, and its expressed protein was localized in the nucleus. Assays of gene activity showed that CsNAC7 has self-activation activity in yeast, that the active region is at the N-terminus, and that the transient expression of CsNAC7 could significantly promote the expression of yhNMT1 in tobacco leaves. In addition, overexpression or silencing of CsNAC7 significantly increased or decreased the expression of yhNMT1 and the accumulation of caffeine in transgenic tea calli, respectively. Our data suggest that the isolated transcription factor CsNAC7 positively regulates the caffeine synthase gene yhNMT1 and promotes caffeine accumulation in tea plant.
Collapse
Affiliation(s)
- Wenhui Ma
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Xin Kang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Ping Liu
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Kexin She
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Corresponding authors. ,
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Corresponding authors. ,
| |
Collapse
|