1
|
Mirabelli M, Chiefari E, Arcidiacono B, Salatino A, Pascarella A, Morelli M, Credendino SC, Brunetti FS, Di Vito A, Greco A, Huin V, Nicoletti F, Pierantoni GM, Fedele M, Aguglia U, Foti DP, Brunetti A. HMGA1 deficiency: a pathogenic link between tau pathology and insulin resistance. EBioMedicine 2025; 115:105700. [PMID: 40233659 PMCID: PMC12019291 DOI: 10.1016/j.ebiom.2025.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Growing evidence links tau-related neurodegeneration with insulin resistance and type 2 diabetes (T2D), though the underlying mechanisms remain unclear. Our previous research identified HMGA1 as crucial for insulin receptor (INSR) expression, with defects in the HMGA1 gene associated with insulin resistance and T2D. Here, we explore HMGA1 deficiency as a potential contributor to tauopathies, such as Alzheimer's disease (AD), and its connection to insulin resistance. METHODS Immunoblot analyses, protein-DNA interaction studies, ChIP-qPCR, and reporter gene assays were conducted in human and mouse neuronal cell models. Tau immunohistochemistry, behavioural studies, and brain glucose metabolism were analysed in Hmga1-knockout mice. Additionally, a case-control study investigated the relationship between HMGA1 and tau pathology in patients with tauopathy, carrying or not the HMGA1 rs146052672 variant, known to reduce HMGA1 protein levels and increase the risk of insulin resistance and T2D. FINDINGS We show that HMGA1 regulates tau protein expression primarily through the specific repression of MAPT gene transcription. In both human neuronal cells and primary mouse neurons, tau mRNA and protein levels were inversely correlated with HMGA1 expression. This inverse relationship was further confirmed in the brain of Hmga1-knockout mice, where tau was overexpressed, INSR was downregulated, and brain glucose uptake was impaired. Additionally, the rs146052672 variant was more common in patients with tauopathy (12/69, 17.4%) than in controls (10/200, 5.0%) (p = 0.001), and carriers of this variant exhibited more severe disease progression and poorer therapeutic outcomes. INTERPRETATION These findings suggest that HMGA1 deficiency may drive tau pathology, linking tauopathies to insulin resistance and providing new insights into the relationship between metabolic and neurodegenerative disorders. Furthermore, our observation that over 17% of individuals with tauopathy exhibit a deficit in HMGA1 protein production could have significant clinical implications, potentially guiding the development of therapeutic strategies targeting this specific defect. FUNDING See acknowledgements section.
Collapse
Affiliation(s)
- Maria Mirabelli
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Angelo Pascarella
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Maurizio Morelli
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Sara C Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesco S Brunetti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Adelaide Greco
- Interdepartmental Centre of Veterinary Radiology, University of Naples "Federico II", Naples, Italy
| | - Vincent Huin
- University of Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, UMR-S1172, Team Alzheimer & Tauopathies, F-59000, Lille, France
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Giovanna M Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology, CNR, Naples, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Daniela P Foti
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy.
| | - Antonio Brunetti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy.
| |
Collapse
|
2
|
Wang H, Chang TS, Dombroski BA, Cheng PL, Patil V, Valiente-Banuet L, Farrell K, Mclean C, Molina-Porcel L, Rajput A, De Deyn PP, Bastard NL, Gearing M, Kaat LD, Swieten JCV, Dopper E, Ghetti BF, Newell KL, Troakes C, de Yébenes JG, Rábano-Gutierrez A, Meller T, Oertel WH, Respondek G, Stamelou M, Arzberger T, Roeber S, Müller U, Hopfner F, Pastor P, Brice A, Durr A, Ber IL, Beach TG, Serrano GE, Hazrati LN, Litvan I, Rademakers R, Ross OA, Galasko D, Boxer AL, Miller BL, Seeley WW, Deerlin VMV, Lee EB, White CL, Morris H, de Silva R, Crary JF, Goate AM, Friedman JS, Leung YY, Coppola G, Naj AC, Wang LS, Dickson DW, Höglinger GU, Schellenberg GD, Geschwind DH, Lee WP. Whole-Genome Sequencing Analysis Reveals New Susceptibility Loci and Structural Variants Associated with Progressive Supranuclear Palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.28.23300612. [PMID: 38234807 PMCID: PMC10793533 DOI: 10.1101/2023.12.28.23300612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Background Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Chang
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leopoldo Valiente-Banuet
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurt Farrell
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catriona Mclean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Laura Molina-Porcel
- Alzheimer's disease and other cognitive disorders unit. Neurology Service, Hospital Clínic, Fundació Recerca Clínic Barcelona (FRCB). Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Alex Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk (Antwerp), Belgium
- Department of Neurology, University Medical Center Groningen, NL-9713 AV Groningen, Netherlands
| | | | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Elise Dopper
- Netherlands Brain Bank and Erasmus University, Netherlands
| | - Bernardino F Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King's College London, London, UK
| | | | - Alberto Rábano-Gutierrez
- Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas) - Centro Alzheimer Fundación Reina Sofía, Madrid, Spain
| | - Tina Meller
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | | | - Gesine Respondek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson's disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
- European University of Cyprus, Nicosia, Cyprus
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Germany
| | | | | | - Franziska Hopfner
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Spain
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Irene Litvan
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Vivanna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huw Morris
- Departmento of Clinical and Movement Neuroscience, University College of London, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - John F Crary
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey S Friedman
- Friedman Bioventure, Inc., Del Mar, CA, USA; Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Coppola
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Geschwind
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Gerstenecker A, Roberson ED, Schellenberg GD, Standaert DG, Shprecher DR, Kluger BM, Litvan I. Genetic influences on cognition in progressive supranuclear palsy. Mov Disord 2017; 32:1764-1771. [PMID: 29076559 PMCID: PMC5818145 DOI: 10.1002/mds.27196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Cognitive dysfunction is common in progressive supranuclear palsy, but the influence of genetics on cognition in this disorder has not been well studied. The objective of this study was to investigate the effect of genes previously identified as risk alleles, including microtubule-associated protein tau, myelin-associated oligodendrocyte basic protein, eukaryotic translation initiation factor 2-alpha kinase 3, and syntaxin 6, as well as apolipoprotein E, on cognitive function in progressive supranuclear palsy. METHODS The sample was composed of 305 participants who met criteria for possible or probable progressive supranuclear palsy. Genetic information was determined by TaqMan genotyping assays. A neuropsychological battery was administered to all study participants. Measures included in the battery evaluated for general cognition, executive function, memory, attention, language, and visuospatial ability. RESULTS Cognition did not vary significantly between individuals homozygous or heterozygous for the microtubule-associated protein tau H1 haplotype. However, cognition varied significantly at the subhaplotype level, with carriers of the microtubule-associated protein tau rs242557/A allele, which marks the H1c subhaplotype, performing better than noncarriers on measures of general cognitive function, executive function, and attention. No associations were found for other genes. CONCLUSIONS The results of the current study indicate that variations in microtubule-associated protein tau influence cognition in progressive supranuclear palsy. Although the H1c-specific rs242557/A allele is a risk factor for progressive supranuclear palsy, carriers of this allele may exhibit better cognition than non-carriers in patients with the atypical parkinsonian syndrome. Further studies are needed. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Adam Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
- Alzheimer’s Disease Center, University of Alabama at Birmingham, Birmingham, AL
| | - Erik D. Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
- Alzheimer’s Disease Center, University of Alabama at Birmingham, Birmingham, AL
- Center for Neurodegeneration,University of Alabama at Birmingham, Birmingham, AL
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David G. Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - David R. Shprecher
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Neurology, University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Benzi M. Kluger
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Movement Disorders Center, University of California, San Diego, California, USA
| |
Collapse
|
4
|
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol 2017; 151:101-138. [PMID: 27084356 PMCID: PMC5061605 DOI: 10.1016/j.pneurobio.2016.04.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/02/2023]
Abstract
None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Selina Wray
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danira Bažadona
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luc Buée
- University of Lille, Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Lille, France
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Claude M Wischik
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|