1
|
Li Y, Wu J, Du F, Tang T, Lim JCW, Karuppiah T, Liu J, Sun Z. Neuroprotective Potential of Glycyrrhizic Acid in Ischemic Stroke: Mechanisms and Therapeutic Prospects. Pharmaceuticals (Basel) 2024; 17:1493. [PMID: 39598404 PMCID: PMC11597102 DOI: 10.3390/ph17111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ischemic stroke is a leading cause of disability and mortality worldwide, with current therapies limited in addressing its complex pathophysiological mechanisms, such as inflammation, oxidative stress, apoptosis, and impaired autophagy. Glycyrrhizic acid (GA), a bioactive compound from licorice (Glycyrrhiza glabra L.), has demonstrated neuroprotective properties in preclinical studies. This review consolidates current evidence on GA's pharmacological mechanisms and assesses its potential as a therapeutic agent for ischemic stroke. Methods: This review examines findings from recent preclinical studies and reviews on GA's neuroprotective effects, focusing on its modulation of inflammation, oxidative stress, apoptosis, and autophagy. Studies were identified from major scientific databases, including PubMed, Web of Science, and Embase, covering research from January 2000 to August 2024. Results: GA has demonstrated significant neuroprotective effects through the modulation of key pathways, including HMGB1/TLR4/NF-κB and Keap1/Nrf2, thereby reducing neuroinflammation, oxidative stress, and apoptosis. Additionally, GA promotes autophagy and modulates immune responses, suggesting it could serve as an adjunct therapy to enhance the efficacy and safety of existing treatments, such as thrombolysis. Conclusions: Current findings underscore GA's potential as a multi-targeted neuroprotective agent in ischemic stroke, highlighting its anti-inflammatory, antioxidant, and anti-apoptotic properties. However, while preclinical data are promising, further clinical trials are necessary to validate GA's therapeutic potential in humans. This review provides a comprehensive overview of GA's mechanisms of action, proposing directions for future research to explore its role in ischemic stroke management.
Collapse
Affiliation(s)
- Yanwen Li
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Juan Wu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Fang Du
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Tao Tang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
| | - Thilakavathy Karuppiah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jiaxin Liu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Zhong Sun
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
| |
Collapse
|
2
|
Oo TT. Ischemic stroke and diabetes: a TLR4-mediated neuroinflammatory perspective. J Mol Med (Berl) 2024; 102:709-717. [PMID: 38538987 DOI: 10.1007/s00109-024-02441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 05/21/2024]
Abstract
Ischemic stroke is the major contributor to morbidity and mortality in people with diabetes mellitus. In ischemic stroke patients, neuroinflammation is now understood to be one of the main underlying mechanisms for cerebral damage and recovery delay. It has been well-established that toll-like receptor 4 (TLR4) signaling pathway plays a key role in neuroinflammation. Emerging research over the last decade has revealed that, compared to ischemic stroke without diabetes mellitus, ischemic stroke with diabetes mellitus significantly upregulates TLR4-mediated neuroinflammation, increasing the risk of cerebral and neuronal damage as well as neurofunctional recovery delay. This review aims to discuss how ischemic stroke with diabetes mellitus amplifies TLR4-mediated neuroinflammation and its consequences. Additionally covered in this review is the potential application of TLR4 antagonists in the management of diabetic ischemic stroke.
Collapse
Affiliation(s)
- Thura Tun Oo
- Department of Biomedical Sciences, University of Illinois at Chicago, College of Medicine Rockford, Rockford, IL, USA.
| |
Collapse
|
3
|
Machin A, Susilo I, Purwanto DA. Green tea and its active compound epigallocathechin-3-gallate (EGCG) inhibit neuronal apoptosis in a middle cerebral artery occlusion (MCAO) model. J Basic Clin Physiol Pharmacol 2021; 32:319-325. [PMID: 34214383 DOI: 10.1515/jbcpp-2020-0454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/20/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To determine the effect of green tea with the active ingredient epigallocathechin-3-gallate (EGCG) on the inhibition of apoptosis in the middle cerebral artery occlusion (MCAO) model. METHODS Four month old male Rattus norvegicus rats with a body weight of 200-275 g was used for the MCAO model and divided into five groups, and the treatment was carried out for 7 days. Before being sacrificed, the subject had 1 cc of blood drawn for high mobility group box 1 (HMGB-1) examination using enzyme-linked immunosorbent assay (ELISA), and after being sacrificed, the brain tissue specimen was taken to examine caspase-3 and B-cell lymphoma 3 (BCL-3) using immunohistochemistry methods. RESULTS There was no significant difference in HMGB-1 results for the treatment group compared to the control group (P1: 384.20 ± 231.72 [p = 0.553]; P2: 379.11 ± 268.4 [p = 0.526]; P3: 284, 87 ± 276.19 [p = 0.140]; P4: 435.32 ± 279.95 [p = 0.912]). There is a significant increase in BCL-2 expression between the treatment group compared to the control group (P1: 2.58 ± 0.51 [p = 0.04]; P2: 3.36 ± 0.50 [p<0.001]; P3: 4.00 ± 0.42 [p<0.001]; P4: 3.60 ± 0.52 [p<0.001]). There was a significant difference in caspase-3 expression compared to the control group in the P3 group (P1: 4.33 ± 0.49 [p = 0.652]; P2: 4.09 ± 0.30 [p = 0.136]; P3: 3.58 ± 0.51 [p = 0.01]; P4: 3.89 ± 0.42 [p = 0.063]). There is no correlation between HMGB-1 and caspase-3 (r = -0.063; p = 0.613) or BCL-2 (r = -0.106; p = 0.396). There is significant negative correlation between caspase-3 and BCL-2 (r = -0.459; p = 0.000). CONCLUSIONS Green tea with the active ingredient EGCG can inhibit neuronal cell death through the apoptotic pathway and not through the activation of HMGB-1.
Collapse
Affiliation(s)
- Abdulloh Machin
- Department Neurology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Susilo
- Department Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Djoko A Purwanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|