1
|
Worsley CM, Veale RB, Mayne ES. Dataset of cell viability and analytes released by cancer cell lines exposed to low pH and conditioned medium. Data Brief 2024; 54:110460. [PMID: 38711735 PMCID: PMC11070662 DOI: 10.1016/j.dib.2024.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Cancer cells influence their microenvironment by secreting factors that promote tumour growth and survival while evading immune-mediated destruction. We previously determined the expression of secreted factors in breast and oesophageal squamous cell carcinoma cell lines (MCF-7 and WHCO6, respectively) using Luminex assays. These cells were subsequently treated with low pH medium to mimic in vivo acid exposure, and the effects on cell viability, proliferation, and secretion of cytokines, chemokines and growth factors were described [1]. Here, we present the datasets from these experiments in addition to data obtained from treating cell lines with conditioned medium from apoptotic cell cultures.
Collapse
Affiliation(s)
- Catherine M. Worsley
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
- National Health Laboratory Service, South Africa
| | - Rob B. Veale
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa
| | - Elizabeth S. Mayne
- National Health Laboratory Service, South Africa
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
2
|
Worsley CM, Veale RB, Mayne ES. The effect of acute acid exposure on immunomodulatory protein secretion, cell survival, and cell cycle progression in tumour cell lines. Cytokine 2023; 162:156118. [PMID: 36584453 DOI: 10.1016/j.cyto.2022.156118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Cancer develops when multiple systems fail to suppress uncontrolled cell proliferation. Breast cancers and oesophageal squamous cell carcinoma (OSCC) are common cancers prone to genetic instability. They typically occur in acidic microenvironments which impacts on cell proliferation, apoptosis, and their influence on surrounding cells to support tumour growth and immune evasion. This study aimed to evaluate the impact of the acidic tumour microenvironment on the production of pro-tumorigenic and immunomodulatory factors in cancer cell lines. Multiple factors that may mediate immune evasion were secreted including IL-6, IL-8, G-CSF, IP-10, GDF-15, Lipocalin-2, sICAM-1, and myoglobin. Others, such as VEGF, FGF, and EGF that are essential for tumour cell survival were also detected. Treatment with moderate acidity did not significantly affect secretion of most proteins, whereas very low pH did. Distinct differences in apoptosis were noted between the cell lines, with WHCO6 being better adapted to survive at moderate acid levels. Conditioned medium from acid-treated cells stimulated increased cell viability and proliferation in WHCO6, but increased cell death in MCF-7. This study highlights the importance of acidic tumour microenvironment in controlling apoptosis, cell proliferation, and immune evasion which may be different at different anatomical sites. Immunomodulatory molecules and growth factors provide therapeutic targets to improve the prognosis of individuals with cancer.
Collapse
Affiliation(s)
- Catherine M Worsley
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa; Department of Haematology and Molecular Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa; National Health Laboratory Service, South Africa.
| | - Rob B Veale
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa
| | - Elizabeth S Mayne
- National Health Laboratory Service, South Africa; Department of Immunology Faculty of Health Sciences, University of the Witwatersrand, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
3
|
Cellular prion protein offers neuroprotection in astrocytes submitted to amyloid β oligomer toxicity. Mol Cell Biochem 2022:10.1007/s11010-022-04631-w. [PMID: 36576715 DOI: 10.1007/s11010-022-04631-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
The cellular prion protein (PrPC), in its native conformation, performs numerous cellular and cognitive functions in brain tissue. However, despite the cellular prion research in recent years, there are still questions about its participation in oxidative and neurodegenerative processes. This study aims to elucidate the involvement of PrPC in the neuroprotection cascade in the presence of oxidative stressors. For that, astrocytes from wild-type mice and knockout to PrPC were subjected to the induction of oxidative stress with hydrogen peroxide (H2O2) and with the toxic oligomer of the amyloid β protein (AβO). We observed that the presence of PrPC showed resistance in the cell viability of astrocytes. It was also possible to monitor changes in basic levels of metals and associate them with an induced damage condition, indicating the precise role of PrPC in metal homeostasis, where the absence of PrPC leads to metallic unbalance, culminating in cellular vulnerability to oxidative stress. Increased caspase 3, p-Tau, p53, and Bcl2 may establish a relationship between a PrPC and an induced damage condition. Complementarily, it has been shown that PrPC prevents the internalization of AβO and promotes its degradation under oxidative stress induction, thus preventing protein aggregation in astrocytes. It was also observed that the presence of PrPC can be related to translocating SOD1 to cell nuclei under oxidative stress, probably controlling DNA damage. The results of this study suggest that PrPC acts against oxidative stress activating the cellular response and defense by displaying neuroprotection to neurons and ensuring the functionality of astrocytes.
Collapse
|
4
|
Cytotoxic Effects of Cannabidiol on Neonatal Rat Cortical Neurons and Astrocytes: Potential Danger to Brain Development. Toxins (Basel) 2022; 14:toxins14100720. [PMID: 36287988 PMCID: PMC9611593 DOI: 10.3390/toxins14100720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
The influence of cannabidiol (CBD) on brain development is inadequately understood. Since CBD is considered a non-intoxicating drug, it has attracted great interest concerning its potential medical applicability, including in pregnant women and children. Here, we elucidated the response of perinatal rat cortical neurons and astrocytes to CBD at submicromolar (0.1, 0.5, 1, 5 µM) concentrations attainable in humans. The effect of CBD was concentration- and time-dependent and cell-specific. In neurons, 0.1 µM CBD induced an early and transient change in mitochondrial membrane potential (ΔΨm), ATP depletion, and caspase-8 activation, followed by rapid ATP recovery and progressive activation of caspase-9 and caspase-3/7, resulting in early apoptotic cell death with reduction and shortening of dendrites, cell shrinkage, and chromatin condensation. The decrease in neuronal viability, ATP depletion, and caspase activation due to CBD exposure was prevented by transient receptor potential vanilloid 1 (TRPV1) antagonist. In astrocytes, 0.5 µM CBD caused an immediate short-term dysregulation of ΔΨm, followed by ATP depletion with transient activation of caspase-8 and progressive activation of caspase-9 and caspase-3/7, leading to early apoptosis and subsequent necroptosis. In astrocytes, both TRPV1 and cannabinoid receptor 1 (CB<sub>1</sub>) antagonists protected viability and prevented apoptosis. Given that CBD is a non-intoxicating drug, our results clearly show that this is not the case during critical periods of brain development when it can significantly interfere with the endogenous cannabinoid system.
Collapse
|
5
|
Survival and Neurogenesis-Promoting Effects of the Co-Overexpression of BCLXL and BDNF Genes on Wharton’s Jelly-Derived Mesenchymal Stem Cells. Life (Basel) 2022; 12:life12091406. [PMID: 36143442 PMCID: PMC9501059 DOI: 10.3390/life12091406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
The main problem with using MSC (mesenchymal stem cells) to treat the deficient diseases of the central nervous system is the low cell survival rate after the transplant procedure and their low ability to spontaneously differentiate into functional neurons. The aim of this study was to investigate the effects of genetically modifying MSC. A co-overexpression of two genes was performed: BCLXL was supposed to increase the resistance of the cells to the toxic agents and BDNF was supposed to direct cells into the neuronal differentiation pathway. As a result, it was possible to obtain the functional overexpression of the BCLXL and BDNF genes. These cells had an increased resistance to apoptosis-inducing toxicants (staurosporine, doxorubicin and H2O2). At the same time, the genes of the neuronal pathway (CHAT, TPH1) were overexpressed. The genetically modified MSC increased the survival rate under toxic conditions, which increased the chance of surviving a transplant procedure. The obtained cells can be treated as neural cell progenitors, which makes them a universal material that can be used in various disease models. The production of neurotransmitters suggests that cells transplanted into the brain and subjected to the additional influence of the brain’s microenvironment, will be able to form synapses and become functional neurons.
Collapse
|
6
|
Worsley CM, Veale RB, Mayne ES. Inducing apoptosis using chemical treatment and acidic pH, and detecting it using the Annexin V flow cytometric assay. PLoS One 2022; 17:e0270599. [PMID: 35767593 PMCID: PMC9242499 DOI: 10.1371/journal.pone.0270599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
Cell death is important in physiology, and can happen as a result of structural damage, or as a sequence of programmed cellular processes known as apoptosis. Pathogenic alterations in apoptosis occur in a number of diseases, including cancer, viral infections, autoimmune diseases, immunodeficiencies, and degenerative conditions. Developing accurate and reproducible laboratory methods for inducing and detecting apoptosis is vital for research into these conditions. A number of methods are employed to detect cell death, including DNA fragmentation, the TUNEL assay, and electron microscopy although each has its limitations. Flow cytometry allows for the distinction between live, early apoptotic, late apoptotic and necrotic cells. In this protocol we successfully induce apoptosis using chemical treatment and treatment with low pH in solid tumour cell lines, and have optimized detection using the Annexin V/PI apoptosis assay.
Collapse
Affiliation(s)
- Catherine M. Worsley
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Rob B. Veale
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Elizabeth S. Mayne
- National Health Laboratory Service, Johannesburg, South Africa
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Reid KM, Kitchener EJA, Butler CA, Cockram TOJ, Brown GC. Brain Cells Release Calreticulin That Attracts and Activates Microglia, and Inhibits Amyloid Beta Aggregation and Neurotoxicity. Front Immunol 2022; 13:859686. [PMID: 35514983 PMCID: PMC9065406 DOI: 10.3389/fimmu.2022.859686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Calreticulin is a chaperone, normally found in the endoplasmic reticulum, but can be released by macrophages into the extracellular medium. It is also found in cerebrospinal fluid bound to amyloid beta (Aβ). We investigated whether brain cells release calreticulin, and whether extracellular calreticulin had any effects on microglia and neurons relevant to neuroinflammation and neurodegeneration. We found that microglia release nanomolar levels of calreticulin when inflammatory-activated with lipopolysaccharide, when endoplasmic reticulum stress was induced by tunicamycin, or when cell death was induced by staurosporine, and that neurons release calreticulin when crushed. Addition of nanomolar levels of extracellular calreticulin was found to chemoattract microglia, and activate microglia to release cytokines TNF-α, IL-6 and IL-1β, as well as chemokine (C-C motif) ligand 2. Calreticulin blocked Aβ fibrillization and modified Aβ oligomerization, as measured by thioflavin T fluorescence and transmission electron microscopy. Extracellular calreticulin also altered microglial morphology and proliferation, and prevented Aβ-induced neuronal loss in primary neuron-glial cultures. Thus, calreticulin is released by microglia and neurons, and acts: as an alarmin to recruit and activate microglia, as an extracellular chaperone to prevent Aβ aggregation, and as a neuroprotectant against Aβ neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Anti-Apoptotic Effect of Apelin in Human Placenta: Studies on BeWo Cells and Villous Explants from Third-Trimester Human Pregnancy. Int J Mol Sci 2021; 22:ijms22052760. [PMID: 33803239 PMCID: PMC7967155 DOI: 10.3390/ijms22052760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, we demonstrated the expression of apelin and G-protein-coupled receptor APJ in human placenta cell lines as well as its direct action on placenta cell proliferation and endocrinology. The objective of this study was to examine the effect of apelin on placenta apoptosis in BeWo cells and villous explants from the human third trimester of pregnancy. The BeWo cells and villous explants were incubated with apelin (2 and 20 ng/mL) alone or with staurosporine for 24 to 72 h. First, we analysed the dose- and time-dependent effect of apelin on the expression of apoptotic factors on the mRNA level by real-time PCR and on the protein level using Western blot. Next, we checked caspase 3 and 7 activity by Caspase-Glo 3/7, DNA fragmentation by the Cell Death Detection ELISA kit and oxygen consumption by the MitoXpress-Xtra Oxygen Consumption assay. We found that apelin increased the expression of pro-survival and decreased proapoptotic factors on mRNA and protein levels in both BeWo cells and villous explants. Additionally, apelin inhibited caspase 3 and 7 activity and DNA fragmentation in staurosporine-induced apoptosis as also attenuated oxidative stress by increasing extracellular oxygen consumption. The antiapoptotic effect of apelin in BeWo cells was mediated by the APJ receptor and mitogen-activated protein kinase (ERK1/2/MAP3/1) and protein kinase B (AKT). The obtained results showed the antiapoptotic effect of apelin on trophoblast cells, suggesting its participation in the development of the placenta.
Collapse
|
9
|
The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death. Sci Rep 2020; 10:1566. [PMID: 32005874 PMCID: PMC6994697 DOI: 10.1038/s41598-020-58474-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cell viability and cytotoxicity assays are highly important for drug screening and cytotoxicity tests of antineoplastic or other therapeutic drugs. Even though biochemical-based tests are very helpful to obtain preliminary preview, their results should be confirmed by methods based on direct cell death assessment. In this study, time-dependent changes in quantitative phase-based parameters during cell death were determined and methodology useable for rapid and label-free assessment of direct cell death was introduced. The goal of our study was distinction between apoptosis and primary lytic cell death based on morphologic features. We have distinguished the lytic and non-lytic type of cell death according to their end-point features (Dance of Death typical for apoptosis versus swelling and membrane rupture typical for all kinds of necrosis common for necroptosis, pyroptosis, ferroptosis and accidental cell death). Our method utilizes Quantitative Phase Imaging (QPI) which enables the time-lapse observation of subtle changes in cell mass distribution. According to our results, morphological and dynamical features extracted from QPI micrographs are suitable for cell death detection (76% accuracy in comparison with manual annotation). Furthermore, based on QPI data alone and machine learning, we were able to classify typical dynamical changes of cell morphology during both caspase 3,7-dependent and -independent cell death subroutines. The main parameters used for label-free detection of these cell death modalities were cell density (pg/pixel) and average intensity change of cell pixels further designated as Cell Dynamic Score (CDS). To the best of our knowledge, this is the first study introducing CDS and cell density as a parameter typical for individual cell death subroutines with prediction accuracy 75.4% for caspase 3,7-dependent and -independent cell death.
Collapse
|
10
|
Simenc J, Juric DM, Lipnik-Stangelj M. NADPH oxidase inhibitor VAS2870 prevents staurosporine-induced cell death in rat astrocytes. Radiol Oncol 2019; 53:69-76. [PMID: 30661061 PMCID: PMC6411017 DOI: 10.2478/raon-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background Astrocytes maintain central nerve system homeostasis and are relatively resistant to cell death. Dysfunction of cell death mechanisms may underlie glioblastoma genesis and resistance to cancer therapy; therefore more detailed understanding of astrocytic death modalities is needed in order to design effective therapy. The purpose of this study was to determine the effect of VAS2870, a pan-NADPH oxidase inhibitor, on staurosporine-induced cell death in astrocytes. Materials and methods Cultured rat astrocytes were treated with staurosporine as activator of cell death. Cell viability, production of reactive oxygen species (ROS), and mitochondrial potential were examined using flow cytometric analysis, while chemiluminescence analysis was performed to assess caspase 3/7 activity and cellular ATP. Results We show here for the first time, that VAS2870 is able to prevent staurosporine-induced cell death. Staurosporine exerts its toxic effect through increased generation of ROS, while VAS2870 reduces the level of ROS. Further, VAS2870 partially restores mitochondrial inner membrane potential and level of ATP in staurosporine treated cells. Conclusions Staurosporine induces cell death in cultured rat astrocytes through oxidative stress. Generation of ROS, mitochondrial membrane potential and energy level are sensitive to VAS2870, which suggests NADPH oxidases as an important effector of cell death. Consequently, NADPH oxidases activation pathway could be an important target to modulate astrocytic death.
Collapse
Affiliation(s)
- Janez Simenc
- University of Ljubljana, Faculty of Medicine, Department of Pharmacology and Experimental Toxicology, Ljubljana, Slovenia
| | - Damijana Mojca Juric
- University of Ljubljana, Faculty of Medicine, Department of Pharmacology and Experimental Toxicology, Ljubljana, Slovenia
| | - Metoda Lipnik-Stangelj
- University of Ljubljana, Faculty of Medicine, Department of Pharmacology and Experimental Toxicology, Ljubljana, Slovenia
- Prof. Metoda Lipnik-Stangelj, M.D., M.Pharm., Ph.D., University of Ljubljana, Faculty of Medicine,Department of Pharmacology and Experimental Toxicology, Korytkova ulica 2, SI-1000 Ljubljana, Slovenia. Phone: +386 1 5437330
| |
Collapse
|
11
|
Roest G, Hesemans E, Welkenhuyzen K, Luyten T, Engedal N, Bultynck G, Parys JB. The ER Stress Inducer l-Azetidine-2-Carboxylic Acid Elevates the Levels of Phospho-eIF2α and of LC3-II in a Ca 2+-Dependent Manner. Cells 2018; 7:E239. [PMID: 30513588 PMCID: PMC6316609 DOI: 10.3390/cells7120239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to reduce protein load and restore homeostasis, including via induction of autophagy. We used the proline analogue l-azetidine-2-carboxylic acid (AZC) to induce ER stress, and assessed its effect on autophagy and Ca2+ homeostasis. Treatment with 5 mM AZC did not induce poly adenosine diphosphate ribose polymerase (PARP) cleavage while levels of binding immunoglobulin protein (BiP) and phosphorylated eukaryotic translation initiation factor 2α (eIF2α) increased and those of activating transcription factor 6 (ATF6) decreased, indicating activation of the protein kinase RNA-like ER kinase (PERK) and the ATF6 arms of the UPR but not of apoptosis. AZC treatment in combination with bafilomycin A1 (Baf A1) led to elevated levels of the lipidated form of the autophagy marker microtubule-associated protein light chain 3 (LC3), pointing to activation of autophagy. Using the specific PERK inhibitor AMG PERK 44, we could deduce that activation of the PERK branch is required for the AZC-induced lipidation of LC3. Moreover, both the levels of phospho-eIF2α and of lipidated LC3 were strongly reduced when cells were co-treated with the intracellular Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid tetra(acetoxy-methyl) ester (BAPTA-AM) but not when co-treated with the Na⁺/K⁺ ATPase inhibitor ouabain, suggesting an essential role of Ca2+ in AZC-induced activation of the PERK arm of the UPR and LC3 lipidation. Finally, AZC did not trigger Ca2+ release from the ER though appeared to decrease the cytosolic Ca2+ rise induced by thapsigargin while also decreasing the time constant for Ca2+ clearance. The ER Ca2+ store content and mitochondrial Ca2+ uptake however remained unaffected.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Evelien Hesemans
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Kirsten Welkenhuyzen
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Tomas Luyten
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137 Blindern, N-0318 Oslo, Norway.
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
12
|
Filipova M, Elhelu OK, De Paoli SH, Fremuntova Z, Mosko T, Cmarko D, Simak J, Holada K. An effective "three-in-one" screening assay for testing drug and nanoparticle toxicity in human endothelial cells. PLoS One 2018; 13:e0206557. [PMID: 30379903 PMCID: PMC6209339 DOI: 10.1371/journal.pone.0206557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Evaluating nanoparticle (NP) toxicity in human cell systems is a fundamental requirement for future NP biomedical applications. In this study, we have designed a screening assay for assessing different types of cell death induced by NPs in human umbilical vein endothelial cell (HUVEC) culture. This assay consists of WST-8, LDH and Hoechst 33342 staining, all performed in one well, which enables an evaluation of cell viability, necrosis and apoptosis, respectively, in the same cell sample. The 96-well format and automated processing of fluorescent images enhances the assay rapidity and reproducibility. After testing the assay functionality with agents that induced different types of cell death, we investigated the endothelial toxicity of superparamagnetic iron oxide nanoparticles (SPIONs, 8 nm), silica nanoparticles (SiNPs, 7-14 nm) and carboxylated multiwall carbon nanotubes (CNTCOOHs, 60 nm). Our results indicated that all the tested NP types induced decreases in cell viability after 24 hours at a concentration of 100 μg/ml. SPIONs caused the lowest toxicity in HUVECs. By contrast, SiNPs induced pronounced necrosis and apoptosis. A time course experiment showed the gradual toxic effect of all the tested NPs. CNTCOOHs inhibited tetrazolium derivatives at 100 μg/ml, causing false negative results from the WST-8 and LDH assay. In summary, our data demonstrate that the presented "three-in-one" screening assay is capable of evaluating NP toxicity effectively and reliably. Due to its simultaneous utilization of two different methods to assess cell viability, this assay is also capable of revealing, if NPs interfere with tetrazolium salts.
Collapse
Affiliation(s)
- Marcela Filipova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Biological Models, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Oumsalama K. Elhelu
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Silvia H. De Paoli
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Simak
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
13
|
Tang HM, Tang HL. Anastasis: recovery from the brink of cell death. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180442. [PMID: 30839720 PMCID: PMC6170572 DOI: 10.1098/rsos.180442] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/23/2018] [Indexed: 05/11/2023]
Abstract
Anastasis is a natural cell recovery phenomenon that rescues cells from the brink of death. Programmed cell death such as apoptosis has been traditionally assumed to be an intrinsically irreversible cascade that commits cells to a rapid and massive demolition. Interestingly, recent studies have demonstrated recovery of dying cells even at the late stages generally considered immutable. Here, we examine the evidence for anastasis in cultured cells and in animals, review findings illuminating the potential mechanisms of action, discuss the challenges of studying anastasis and explore new strategies to uncover the function and regulation of anastasis, the identification of which has wide-ranging physiological, pathological and therapeutic implications.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Jiang P, Wang X, Chen X, Wang Y, Kang Z, Wang J, Zhang D. A potential molecular model for studying apoptosis enhanced by the interaction of BCL-G with JAB1 in swine. Oncotarget 2018; 7:62912-62924. [PMID: 27542239 PMCID: PMC5325336 DOI: 10.18632/oncotarget.11230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 07/14/2016] [Indexed: 12/02/2022] Open
Abstract
BCL-G, an apoptotic factor in Bcl-2 family, is involved in several kinds of diseases by interacting with several proteins. Although many studies on mouse and human BCL-G have been reported, porcine BCL-G (pBCL-G) has been little investigated. In this study, our results showed that pBCL-G was universally expressed in porcine tissues. The BH2 domain affected the subcellular distribution of pBCL-G protein. pBCL-G could interact with porcine JAB1 (pJAB1), by which its subcellular distribution was affected. pBCL-G promoted staurosporine-induced apoptosis that was significantly enhanced by interaction of pBCL-G with pJAB1. The apoptosis at least partially depended on the activated caspase-8, -9 and -3. Owing to the close phylogenetic distance between pigs and humans and their many physiological similarities, our findings may provide a potential molecular model to study human BCL-G and also may have implications in the treatment of diseases relevant with BCL-G.
Collapse
Affiliation(s)
- Pengfei Jiang
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xingye Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaolin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yaping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhanzhan Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jingna Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Deli Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
15
|
Sander P, Mostafa H, Soboh A, Schneider JM, Pala A, Baron AK, Moepps B, Wirtz CR, Georgieff M, Schneider M. Vacquinol-1 inducible cell death in glioblastoma multiforme is counter regulated by TRPM7 activity induced by exogenous ATP. Oncotarget 2018; 8:35124-35137. [PMID: 28410232 PMCID: PMC5471040 DOI: 10.18632/oncotarget.16703] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Glioblastomas (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. New therapeutic options are urgently needed. A novel drug, Vacquinol-1 (Vac), a quinolone derivative, displays promising properties by inducing rapid cell death in GBM but not in non-transformed tissues. Features of this type of cell death are compatible with a process termed methuosis. Here we tested Vac on a highly malignant glioma cell line observed by long-term video microscopy. Human dental-pulp stem cells (DPSCs) served as controls. A major finding was that an exogenous ATP concentration of as little as 1 μM counter regulated the Vac-induced cell death. Studies using carvacrol, an inhibitor of transient receptor potential cation channel, subfamily M, member 7 (TRPM7), demonstrated that the ATP-inducible inhibitory effect is likely to be via TRPM7. Exogenous ATP is of relevance in GBM with large necrotic areas. Our results support the use of GBM cultures with different grades of malignancy to address their sensitivity to methuosis. The video-microscopy approach presented here allows decoding of signaling pathways as well as mechanisms of chemotherapeutic resistance by long-term observation. Before implementing Vac as a novel therapeutic drug in GBM, cells from each individual patient need to be assessed for their ATP sensitivity. In summary, the current investigation supports the concept of methuosis, described as non-apoptotic cell death and a promising approach for GBM treatment. Tissue-resident ATP/necrosis may interfere with this cell-death pathway but can be overcome by a natural compound, carvacrol that even penetrates the blood-brain barrier.
Collapse
Affiliation(s)
- Philip Sander
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Haouraa Mostafa
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Ayman Soboh
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Julian M Schneider
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Andrej Pala
- Department of Neurosurgery, Bezirkskrankenhaus Guenzburg, 89312 Guenzburg, Germany
| | - Ann-Kathrin Baron
- Department of Operative Dentistry and Periodontology, University Hospital Ulm, 89081 Ulm, Germany
| | - Barbara Moepps
- Institute of Pharmacology and Toxicology, University Hospital Ulm, 89081 Ulm, Germany
| | - C Rainer Wirtz
- Department of Neurosurgery, Bezirkskrankenhaus Guenzburg, 89312 Guenzburg, Germany
| | - Michael Georgieff
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Marion Schneider
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
16
|
Tang HM, Fung MC, Tang HL. Detecting Anastasis In Vivo by CaspaseTracker Biosensor. J Vis Exp 2018. [PMID: 29443051 DOI: 10.3791/54107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anastasis (Greek for "rising to life") is a recently discovered cell recovery phenomenon whereby dying cells can reverse late-stage cell death processes that are generally assumed to be intrinsically irreversible. Promoting anastasis could in principle rescue or preserve injured cells that are difficult to replace such as cardiomyocytes or neurons, thereby facilitating tissue recovery. Conversely, suppressing anastasis in cancer cells, undergoing apoptosis after anti-cancer therapies, may ensure cancer cell death and reduce the chances of recurrence. However, these studies have been hampered by the lack of tools for tracking the fate of cells that undergo anastasis in live animals. The challenge is to identify the cells that have reversed the cell death process despite their morphologically normal appearance after recovery. To overcome this difficulty, we have developed Drosophila and mammalian CaspaseTracker biosensor systems that can identify and permanently track the anastatic cells in vitro or in vivo. Here, we present in vivo protocols for the generation and use of the CaspaseTracker dual biosensor system to detect and track anastasis in Drosophila melanogaster after transient exposure to cell death stimuli. While conventional biosensors and protocols can label cells actively undergoing apoptotic cell death, the CaspaseTracker biosensor can permanently label cells that have recovered after caspase activation - a hallmark of late-stage apoptosis, and simultaneously identify active apoptotic processes. This biosensor can also track the recovery of the cells that attempted other forms of cell death that directly or indirectly involved caspase activity. Therefore, this protocol enables us to continuously track the fate of these cells and their progeny, facilitating future studies of the biological functions, molecular mechanisms, physiological and pathological consequences, and therapeutic implications of anastasis. We also discuss the appropriate controls to distinguish cells that undergo anastasis from those that display non-apoptotic caspase activity in vivo.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine; School of Life Sciences, Chinese University of Hong Kong;
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong;
| | - Ho Lam Tang
- Department of Neurosurgery, Johns Hopkins University School of Medicine;
| |
Collapse
|
17
|
Shang L, Ding W, Li N, Liao L, Chen D, Huang J, Xiong K. The effects and regulatory mechanism of RIP3 on RGC-5 necroptosis following elevated hydrostatic pressure. Acta Biochim Biophys Sin (Shanghai) 2017; 49:128-137. [PMID: 28039150 DOI: 10.1093/abbs/gmw130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 01/04/2023] Open
Abstract
Necroptosis is a type of regulated cell death that has been implicated in various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family, is an important mediator of the necroptotic pathway. Cleavage of RIP3 at Asp328 by caspase-8 abolishes the kinase activity of RIP3, which is critical for necroptosis. Moreover, RIP3 is significantly upregulated during the early stages of acute high intra-ocular pressure and oxygen glucose deprivation. In this study, the effects of RIP3 during elevated hydrostatic pressure (EHP) were investigated and the possible mechanism through which caspase-8 regulated RIP3 cleavage was explored. Flow cytometry analysis revealed that the number of EHP-induced necrotic retinal ganglion cell 5 (RGC-5) cells was reduced after RIP3-knockdown. Furthermore, malondialdehyde (MDA) levels and glycogen phosphorylase (PYGL) activity in normal RGC-5 cells were much higher than those in RIP3-knockdown cells after EHP. EHP-induced RGC-5 necrosis was significantly reduced after treatment with butylated hydroxyanisole (BHA), a reactive oxygen species (ROS) scavenger. MDA levels and PYGL activity were lower in normal RGC-5 cells than those in cells with caspase-8 inhibition after EHP. Western blot analysis demonstrated that the RIP3 cleavage product was upregulated in cells with caspase-8 inhibition. Additionally, flow cytometry analysis revealed that the number of EHP-induced necrotic RGC-5 cells was increased after caspase-8 inhibition. Our results suggested that RGC-5 necroptosis following EHP was mediated by RIP3 through induction of PYGL activity and subsequent ROS accumulation. Thus, caspase-8 may participate in the regulation of RGC-5 necroptosis via RIP3 cleavage.
Collapse
Affiliation(s)
- Lei Shang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Wei Ding
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Na Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
18
|
Liu X, Ding S, Shi P, Dietrich R, Märtlbauer E, Zhu K. Non-hemolytic enterotoxin of Bacillus cereus induces apoptosis in Vero cells. Cell Microbiol 2016; 19. [PMID: 27762484 DOI: 10.1111/cmi.12684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Bacillus cereus is an opportunistic pathogen that often causes foodborne infectious diseases and food poisoning. Non-hemolytic enterotoxin (Nhe) is the major toxin found in almost all enteropathogenic B. cereus and B. thuringiensis isolates. However, little is known about the cellular response after Nhe triggered pore formation on cell membrane. Here, we demonstrate that Nhe induced cell cycle arrest at G0 /G1 phase and provoked apoptosis in Vero cells, most likely associated with mitogen-activated protein kinase (MAPK) and death receptor pathways. The influx of extracellular calcium ions and increased level of reactive oxygen species in cytoplasm were sensed by apoptosis signal-regulating kinase 1 (ASK1) and p38 MAPK. Extrinsic death receptor Fas could also promote the activation of p38 MAPK. Subsequently, ASK1 and p38 MAPK triggered downstream caspase-8 and 3 to initiate apoptosis. Our results clearly demonstrate that ASK1, and Fas-p38 MAPK-mediated caspase-8 dependent pathways are involved in apoptotic cell death provoked by the pore-forming enterotoxin Nhe.
Collapse
Affiliation(s)
- Xiaoye Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peijie Shi
- The Children's Hospital of Fudan University, Shanghai, China
| | - Richard Dietrich
- Institute of Food Safety, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Institute of Food Safety, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Shi H, Williams JAE, Guo L, Stampoulis D, Francesca Cordeiro M, Moss SE. Exposure to the complement C5b-9 complex sensitizes 661W photoreceptor cells to both apoptosis and necroptosis. Apoptosis 2016; 20:433-43. [PMID: 25735751 PMCID: PMC4348505 DOI: 10.1007/s10495-015-1091-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The loss of photoreceptors is the defining characteristic of many retinal degenerative diseases, but the mechanisms that regulate photoreceptor cell death are not fully understood. Here we have used the 661W cone photoreceptor cell line to ask whether exposure to the terminal complement complex C5b-9 induces cell death and/or modulates the sensitivity of these cells to other cellular stressors. 661W cone photoreceptors were exposed to complete normal human serum following antibody blockade of CD59. Apoptosis induction was assessed morphologically, by flow cytometry, and on western blotting by probing for cleaved PARP and activated caspase-3. Necroptosis was assessed by flow cytometry and Sirtuin 2 inhibition using 2-cyano-3-[5-(2,5-dichlorophenyl)-2-furyl]-N-5-quinolinylacrylamide (AGK2). The sensitivity of 661W cells to ionomycin, staurosporine, peroxide and chelerythrine was also investigated, with or without prior formation of C5b-9. 661W cells underwent apoptotic cell death following exposure to C5b-9, as judged by poly(ADP-ribose) polymerase 1 cleavage and activation of caspase-3. We also observed apoptotic cell death in response to staurosporine, but 661W cells were resistant to both ionomycin and peroxide. Interestingly, C5b-9 significantly increased 661W sensitivity to staurosporine-induced apoptosis and necroptosis. These studies show that low levels of C5b-9 on 661W cells can induce apoptosis, and that C5b-9 specifically sensitizes 661W cells to certain apoptotic and necroptotic pathways. Our observations provide new insight into the potential role of the complement system in photoreceptor loss, with implications for the molecular aetiology of retinal disease.
Collapse
Affiliation(s)
- Hui Shi
- Department of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | | | | | | | | |
Collapse
|
20
|
Kanno H, Ozawa H, Tateda S, Yahata K, Itoi E. Upregulation of the receptor-interacting protein 3 expression and involvement in neural tissue damage after spinal cord injury in mice. BMC Neurosci 2015; 16:62. [PMID: 26450067 PMCID: PMC4599321 DOI: 10.1186/s12868-015-0204-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background Necroptosis is a newly identified type of programmed cell death that differs from apoptosis. Recent studies have demonstrated that necroptosis is involved in multiple pathologies of various human diseases. Receptor-interacting protein 3 (RIP3) is known to be a critical regulator of necroptosis. This study investigated alterations in the RIP3 expression and the involvement in neural tissue damage after spinal cord injury (SCI) in mice. Results Immunohistochemical analysis demonstrated that the RIP3 expression was significantly increased in the lesion site after spinal cord hemisection. The increased expression of RIP3 started at 24 h, peaked at 3 days and lasted for at least 21 days after hemisection. The RIP3 expression was observed in neurons, astrocytes and oligodendrocytes. Western blot analysis also demonstrated the RIP3 protein expression significantly upregulated in the injured spinal cord. RIP3 staining using propidium iodide (PI)-labeled sections showed most of the PI-labeled cells were observed as RIP3-positive. Double staining of TUNEL and RIP3 demonstrated that TUNEL-positive cells exhibiting shrunken or fragmented nuclei, as generally observed in apoptotic cells, rarely expressed RIP3. Conclusions The present study first demonstrated that the expression of RIP3 is dramatically upregulated in various neural cells in the injured spinal cord and peaked at 3 days after injury. Additionally, most of the PI-labeled cells expressed RIP3 in response to neural tissue damage after SCI. The present study suggested that the upregulation of the RIP3 expression may play a role as a novel molecular mechanism in secondary neural tissue damage following SCI. However, further study is needed to clarify the specific molecular mechanism underlying the relationship between the RIP3 expression and cell death in the injured spinal cord.
Collapse
Affiliation(s)
- Haruo Kanno
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Hiroshi Ozawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Satoshi Tateda
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Kenichiro Yahata
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
21
|
Kwon MS, Kim MH, Kim SH, Park KD, Yoo SH, Oh IU, Pak S, Seo YJ. Erythropoietin exerts cell protective effect by activating PI3K/Akt and MAPK pathways in C6 Cells. Neurol Res 2014; 36:215-23. [PMID: 24512015 DOI: 10.1179/1743132813y.0000000284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Even though erythropoietin (EPO) is a neurotropic cytokine that is recognized widely for its role in the development, maintenance, protection, and repair of the nervous system, there are few reports concerning EPO-mediated influences on the glial cells in the central nervous system. In this study, we investigated anti-inflammatory and anti-apoptotic effects of EPO on C6 glioma cells (C6 cells). Erythropoietin did not attenuate inflammatory response, such as nitrite production, iNOS gene expression, and pro-inflammatory cytokines when LPS/TNF-alpha mixture was treated. However, EPO increased C6 cell viability by exerting cell protective effect against staurosporine stimulation. Erythropoietin increased the transient Akt expression at 30 minutes and induced the gradual elevation of ERK1/2 and p38 expression as time progressed. The cell protective effect of EPO was also significantly attenuated with pretreatment of specific PI3K, pERK1/2, or pP38 inhibitor. In summary, these results suggest that EPO may exert its cell protective functions via the direct cell protective activity rather than via its anti-inflammatory effect. Moreover, the PI3K/Akt and mitogen activated protein kinase (MAPK) pathways may be responsible for cell survival against cytotoxicity.
Collapse
|
22
|
Effect of staurosporine in the morphology and viability of cerebellar astrocytes: role of reactive oxygen species and NADPH oxidase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:678371. [PMID: 25215174 PMCID: PMC4151592 DOI: 10.1155/2014/678371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
Cell death implies morphological changes that may contribute to the progression of this process. In astrocytes, the mechanisms involving the cytoskeletal changes during cell death are not well explored. Although NADPH oxidase (NOX) has been described as being a critical factor in the production of ROS, not much information is available about the participation of NOX-derived ROS in the cell death of astrocytes and their role in the alterations of the cytoskeleton during the death of astrocytes. In this study, we have evaluated the participation of ROS in the death of cultured cerebellar astrocytes using staurosporine (St) as death inductor. We found that astrocytes express NOX1, NOX2, and NOX4. Also, St induced an early ROS production and NOX activation that participate in the death of astrocytes. These findings suggest that ROS produced by St is generated through NOX1 and NOX4. Finally, we showed that the reorganization of tubulin and actin induced by St is ROS independent and that St did not change the level of expression of these cytoskeletal proteins. We conclude that ROS produced by a NOX is required for cell death in astrocytes, but not for the morphological alterations induced by St.
Collapse
|
23
|
Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, Fernández-López A, Duarte C, Carvalho A, Santos A. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis 2014; 68:26-36. [DOI: 10.1016/j.nbd.2014.04.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022] Open
|
24
|
Porcine JAB1 significantly enhances apoptosis induced by staurosporine. Cell Death Dis 2013; 4:e823. [PMID: 24091666 PMCID: PMC3824667 DOI: 10.1038/cddis.2013.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/18/2023]
Abstract
c-Jun activation domain-binding protein-1 (JAB1), also known as the subunit 5 of the COP9 signalosome, is a multifunctional protein that regulates cell proliferation, apoptosis and oncogenesis by interacting with and subsequently degrading a large number of proteins. Although human JAB1 (hJAB1) has been studied for a long time, studies on porcine JAB1 (pJAB1) have never been reported. In the present study, we cloned and characterized the pJAB1 gene. The genomic structure of the pJAB1 gene was determined. The open-reading frame of pJAB1 encoded 334 amino acids. The deduced amino acid sequence was highly similar to homologs in other species. Furthermore, the tertiary structure analysis and phylogenetic analysis indicated that JAB1 was highly conservative among species. pJAB1 may interact with several proteins according to protein–protein interactions analysis. In addition, pJAB1 was found to be universally expressed in porcine tissues. Subcellular localization analysis showed that GFP–pJAB1 fusion protein distributed specifically in the cytoplasm. Flow cytometric analysis proved that pJAB1 significantly enhanced apoptosis induced by staurosporine, which at least partially depended on the activation of caspase-9 and caspase-3. This study is useful for understanding the function of pJAB1 and offers a potential molecular model for the investigation of diseases related to hJAB1.
Collapse
|