1
|
Chiechio RM, Caponnetto A, Battaglia R, Ferrara C, Butera E, Musumeci P, Reitano R, Ruffino F, Maccarrone G, Di Pietro C, Marchi V, Lanzanò L, Arena G, Grasso A, Copat C, Ferrante M, Contino A. Internalization of Pegylated Er:Y 2O 3 Nanoparticles inside HCT-116 Cancer Cells: Implications for Imaging and Drug Delivery. ACS APPLIED NANO MATERIALS 2023; 6:19126-19135. [PMID: 37915835 PMCID: PMC10616970 DOI: 10.1021/acsanm.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Lanthanide-doped nanoparticles, featuring sharp emission peaks with narrow bandwidth, exhibit high downconversion luminescence intensity, making them highly valuable in the fields of bioimaging and drug delivery. High-crystallinity Y2O3 nanoparticles (NPs) doped with Er3+ ions were functionalized by using a pegylation procedure to confer water solubility and biocompatibility. The NPs were thoroughly characterized using transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), and photoluminescence measurements. The pegylated nanoparticles were studied both from a toxicological perspective and to demonstrate their internalization within HCT-116 cancer cells. Cell viability tests allowed for the identification of the "optimal" concentration, which yields a detectable fluorescence signal without being toxic to the cells. The internalization process was investigated using a combined approach involving confocal microscopy and ICP-MS. The obtained data clearly indicate the efficient internalization of NPs into the cells with emission intensity showing a strong correlation with the concentrations of nanoparticles delivered to the cells. Overall, this research contributes significantly to the fields of nanotechnology and biomedical research, with noteworthy implications for imaging and drug delivery applications.
Collapse
Affiliation(s)
- Regina Maria Chiechio
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- Consiglio
Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi
(CNR-IMM), Via S. Sofia
64, 95123 Catania, Italy
| | - Angela Caponnetto
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Rosalia Battaglia
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Carmen Ferrara
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Ester Butera
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
- Institut
des Sciences Chimiques de Rennes, CNRS UMR 6226, Université
Rennes 1, Avenue du général Leclerc, 35042 Rennes, France
| | - Paolo Musumeci
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Riccardo Reitano
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- Consiglio
Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi
(CNR-IMM), Via S. Sofia
64, 95123 Catania, Italy
| | - Giuseppe Maccarrone
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Cinzia Di Pietro
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Valérie Marchi
- Institut
des Sciences Chimiques de Rennes, CNRS UMR 6226, Université
Rennes 1, Avenue du général Leclerc, 35042 Rennes, France
| | - Luca Lanzanò
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Giovanni Arena
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Alfina Grasso
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Chiara Copat
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Margherita Ferrante
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Annalinda Contino
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Umezawa M, Ueya Y, Ichihashi K, Dung DTK, Soga K. Controlling Molecular Dye Encapsulation in the Hydrophobic Core of Core-Shell Nanoparticles for In Vivo Imaging. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:1-13. [PMID: 37363140 PMCID: PMC10081311 DOI: 10.1007/s44174-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/20/2023] [Indexed: 06/28/2023]
Abstract
Polymeric nanoparticles with a hydrophobic core are valuable biomedical materials with potential applications in in vivo imaging and drug delivery. These materials are effective at protecting vulnerable molecules, enabling them to serve their functions in hydrophilic physiological environments; however, strategies that allow the chemical composition and molecular weight of polymers to be tuned, forming nanoparticles to control the functional molecules, are lacking. In this article, we review strategies for designing core-shell nanoparticles that enable the effective and stable encapsulation of functional molecules for biomedical applications. IR-1061, which changes its optical properties in response to the microenvironment are useful for in vitro screening of the in vivo stability of polymeric nanoparticles. An in vitro screening test can be performed by dispersing IR-1061-encapsulated polymer nanoparticles in water, saline, buffer solution, aqueous protein solution, etc., and measuring the absorption spectral changes. Through the screening, the effects of the polarity, molecular weight, and the chiral structure of polymers consisting of polymer nanoparticles on their stability have been revealed. Based on the findings presented here, more methodologies for the effective application of various biomolecules and macromolecules with complex high-dimensional structures are expected to be developed.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Yuichi Ueya
- Tsukuba Research Laboratories, JSR Corporation, 25 Miyukigaoka, Tsukuba, Ibaraki 305-0841 Japan
| | - Kotoe Ichihashi
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Doan Thi Kim Dung
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| |
Collapse
|
3
|
Chiechio RM, Battaglia R, Caponnetto A, Butera E, Franzò G, Reitano R, Purrello M, Ragusa M, Barbagallo D, Barbagallo C, Di Pietro C, Marchi V, Lo Faro MJ, Contino A, Maccarrone G, Musumeci P. Er:Y2O3 and Nd:Y2O3 Nanoparticles: Synthesis, Pegylation, Characterization and Study of Their Luminescence Properties. CHEMOSENSORS 2022; 11:20. [DOI: 10.3390/chemosensors11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Lanthanide-doped yttrium oxide nanoparticles can display selective upconversion properties, rendering them invaluable in the field of nanomedicine for both sensing and diagnostics. Different syntheses of Er:Y2O3 and Nd:Y2O3 nanoparticles (NPs) were studied and optimized to obtain small particles of regular shape and good crystallinity. The morphological and compositional characterizations of the nanoparticles were obtained with different techniques and showed that both Er:Y2O3 and Nd:Y2O3 NPs were well dispersed, with dimensions of the order of a few tens of nanometers. The photoluminescence and cathodoluminescence measurements showed that both Er:Y2O3 and Nd:Y2O3 NPs had good emission as well as upconversion. The nanophosphors were functionalized by a pegylation procedure to suppress unwanted reactions of the NPs with other biological components, making the NP systems biocompatible and the NPs soluble in water and well dispersed. The pegylated core/shell nanoparticles showed the same morphological and optical characteristics as the core, promoting their strategic role as photoactive material for theragnostics and biosensing.
Collapse
|
4
|
Doan TKD, Umezawa M, Okubo K, Kamimura M, Yamaguchi M, Fujii H, Soga K. The effect of Gd-DOTA locations within PLGA- b-PEG micelle encapsulated IR-1061 on bimodal over-1000 nm near-infrared fluorescence and magnetic resonance imaging. Biomater Sci 2022; 10:6244-6257. [PMID: 36106960 DOI: 10.1039/d2bm01213h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal imaging is attractive in biomedical research because it can provide multidimensional information about objects that individual techniques cannot accomplish. In particular, combining over one-thousand-nanometer near-infrared (OTN-NIR) fluorescence and magnetic resonance (MR) imaging is promising for detecting lesions with high sensitivity and structural information. Herein, we describe the development of a bimodal OTN-NIR/MRI probe from gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA) conjugated poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) copolymer (PLGA-b-PEG) micelle encapsulated IR-1061 at two different locations. One configuration contains Gd-DOTA at the end of the PEG of the hydrophilic shell and the other contains Gd-DOTA at the border of PLGA/PEG. The two structures show remarkable differences in fluorescence and R1 relaxation rates in biological environments; the structure with Gd-DOTA at the border of PLGA/PEG exhibits stable fluorescence and T1 signal distribution in live mice. The introduction ratio of Gd-DOTA to PEG is significant for controlling the properties of both structures; a higher Gd-DOTA ratio is preferable for the contrast enhancement effect. We found that Gd-DOTA ratios higher than 10% degraded the fluorescence intensity when Gd-DOTA was bound to the end of PEG. In contrast, the introduction of 70% Gd-DOTA at the border of PLGA/PEG did not exhibit a degraded signal, and the structural stability was enhanced with higher ratios of Gd-DOTA. In conclusion, we confirmed that the location of Gd-DOTA is a crucial factor in designing high-performance probes. The overall properties improve when Gd-DOTA is set on the border of PLGA/PEG. These improvements in the properties by controlling the probe structures are promising for future biomedical applications.
Collapse
Affiliation(s)
- Thi Kim Dung Doan
- Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan. .,Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan
| | - Masakazu Umezawa
- Department of Material Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kyohei Okubo
- Department of Material Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masao Kamimura
- Department of Material Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masayuki Yamaguchi
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan
| | - Kohei Soga
- Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan. .,Department of Material Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
5
|
Thi Kim Dung D, Umezawa M, Ohnuki K, Nigoghossian K, Okubo K, Kamimura M, Yamaguchi M, Fujii H, Soga K. The influence of Gd-DOTA ratios conjugating PLGA-PEG micelles encapsulated IR-1061 in bimodal over–1000 nm near–infrared fluorescence and magnetic resonance imaging. Biomater Sci 2022; 10:1217-1230. [DOI: 10.1039/d1bm01574e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal imaging can provide multidimensional information for understanding concealed microstructures or bioprocesses in biological objects. The combination of over–1000 nm near–infrared (OTN–NIR) fluorescence imaging and magnetic resonance (MR) imaging is...
Collapse
|