1
|
Chen X, Ma L, Gan K, Pan X, Chen S. Phosphorylated proteomics-based analysis of the effects of semaglutide on hippocampi of high-fat diet-induced-obese mice. Diabetol Metab Syndr 2023; 15:63. [PMID: 36998046 PMCID: PMC10064769 DOI: 10.1186/s13098-023-01023-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
The aim of this paper was to investigate the effects of semaglutide on phosphorylated protein expression, and its neuroprotective mechanism in hippocampi of high-fat-diet-induced obese mice. In total, 16 obese mice were randomly divided into model group (H group) and semaglutide group (S group), with 8 mice in each group. In addition, a control group (C group) was set up comprising 8 C57BL/6J male normal mice. The Morris water maze assay was conducted to detect cognitive function changes in the mice, and to observe and compare body weight and expression levels of serological indicators between groups after the intervention. Phosphorylated proteomic analysis was performed to detect the hippocampal protein profile in mice. Proteins up-regulated twofold or down-regulated 0.5-fold in each group and with t-test p < 0.05 were defined as differentially phosphorylated proteins and were analyzed bioinformatically. The results showed that the high-fat diet-induced obese mice had reduced body weight, improved oxidative stress indexes, significantly increased the percentage of water maze trips and the number of platform crossings, and significantly shortened the water maze platform latency after semaglutide intervention. The phosphorylated proteomics results identified that 44 overlapping proteins among the three experimental groups. Most of the phosphorylated proteins identified were closely associated with pathways of neurodegeneration-multiple diseases. In addition, we identified Huntington, Neurofilament light chain, Neurofilament heavy chain as drug targets. This study demonstrates for the first time that semaglutide exerts neuroprotective effects by reducing HTT Ser1843, NEFH Ser 661 phosphorylation and increasing NEFL Ser 473 phosphorylation in hippocampal tissue of obese mice.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Graduate School of Hebei North University, Zhangjiakou, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Liang Ma
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Kexin Gan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
2
|
Lukiw WJ. NF-kB (p50/p65)-Mediated Pro-Inflammatory microRNA (miRNA) Signaling in Alzheimer's Disease (AD). Front Mol Neurosci 2022; 15:943492. [PMID: 35836546 PMCID: PMC9274251 DOI: 10.3389/fnmol.2022.943492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA, United States
- *Correspondence: Walter J. Lukiw
| |
Collapse
|
3
|
Pogue AI, Jaber VR, Sharfman NM, Zhao Y, Lukiw WJ. Downregulation of Neurofilament Light Chain Expression in Human Neuronal-Glial Cell Co-Cultures by a Microbiome-Derived Lipopolysaccharide-Induced miRNA-30b-5p. Front Neurol 2022; 13:900048. [PMID: 35812116 PMCID: PMC9263091 DOI: 10.3389/fneur.2022.900048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
Microbiome-derived Gram-negative bacterial lipopolysaccharide (LPS) has been shown by multiple laboratories to reside within Alzheimer's disease (AD)-affected neocortical and hippocampal neurons. LPS and other pro-inflammatory stressors strongly induce a defined set of NF-kB (p50/p65)-sensitive human microRNAs, including a brain-enriched Homo sapien microRNA-30b-5p (hsa-miRNA-30b-5p; miRNA-30b). Here we provide evidence that this neuropathology-associated miRNA, known to be upregulated in AD brain and LPS-stressed human neuronal-glial (HNG) cells in primary culture targets the neurofilament light (NF-L) chain mRNA 3'-untranslated region (3'-UTR), which is conducive to the post-transcriptional downregulation of NF-L expression observed within both AD and LPS-treated HNG cells. A deficiency of NF-L is associated with consequent atrophy of the neuronal cytoskeleton and the disruption of synaptic organization. Interestingly, miRNA-30b has previously been shown to be highly expressed in amyloid-beta (Aβ) peptide-treated animal and cell models, and Aβ peptides promote LPS entry into neurons. Increased miRNA-30b expression induces neuronal injury, neuron loss, neuronal inflammation, impairment of synaptic transmission, and synaptic failure in neurodegenerative disease and transgenic murine models. This gut microbiota-derived LPS-NF-kB-miRNA-30b-NF-L pathological signaling network: (i) underscores a positive pathological link between the LPS of gastrointestinal (GI)-tract microbes and the inflammatory neuropathology, disordered cytoskeleton, and disrupted synaptic signaling of the AD brain and stressed brain cells; and (ii) is the first example of a microbiome-derived neurotoxic glycolipid having significant detrimental miRNA-30b-mediated actions on the expression of NF-L, an abundant neuron-specific filament protein known to be important in the maintenance of neuronal cell shape, axonal caliber, and synaptic homeostasis.
Collapse
Affiliation(s)
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Walter J. Lukiw
- Alchem Biotech Research, Toronto, ON, Canada
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA, United States
- *Correspondence: Walter J. Lukiw
| |
Collapse
|